Virtual Diesel Particulate Filters: Simulation of the Structure, Exhaust Gas Flow and Particle Deposition

Dr. Stefan Rief, Dipl.-Math. Kilian Schmidt
Andreas Wiegmann, PhD

Department Flow and Material Simulation
Fraunhofer Institute for Industrial Mathematics (ITWM)

3rd AFS Conference “Emission Solutions in Transportations”
October 15-18, 2007, Ann Arbor, MI
Overview

1. Virtual Material Design Cycle
2. Virtual Filter Geometries
3. Simulation of Filtration Processes
 a) Modeling
 b) Simulation Results
 c) Software Tools
4. Summary and Future Developments
1. Virtual Material Design Cycle

Property Requirements Fulfilled?

Virtual Design Cycle

Selection of Media Types, Dimensions, etc.

Computation of Macroscopic Properties of the Filter

Computation of Microscopic Properties of the Filter Medium
2. Virtual Filter Geometries

Multilayer Virtual Nonwoven

- Stochastic generation of the structure with guaranteed adjustable properties, e.g.
 - Distribution of fiber diameters and cross sections
 - Fiber orientation
 - Porosity
 - Layer thickness
 - ...
- Stacking of layers with different parameters
- Use of highly flexible voxel meshes
2. Virtual Filter Geometries

Virtual Sinter Structure I

- Stochastic generation based on
 - Packings of spheres
 - Morphological operations (to generate sinter necks)

- Packings of spheres selected to match the initial grain size distribution of the sinter process

- Approach was applied in an industrial project when no tomographies were available due to
 - Too coarse resolution
 - Difficult preprocessing of samples
2. Virtual Filter Geometries

SEM image

Virtual Reconstruction
2. Virtual Filter Geometries

Quality Measures for Virtual Structures

- “The Eye”
- Porosity
- Cord length distributions: Virtual vs. real SEM cross sections
- Pore size analysis
- Flow properties, e.g. effective permeability or flow resistivity
- Filtration properties
- …

Effective Flow Permeability

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.9 \times 10^{-13} \text{ m}^2$</td>
<td>$5.1 \times 10^{-13} \text{ m}^2$</td>
</tr>
</tbody>
</table>

~ 14.5% deviation!
3. Simulation of Filtration Processes

A) Modeling
- Flow
- Particle Transport
- Particle Deposition

B) Simulation Results
- Design of Diesel Particulate Filters

C) Software Tools
- GEO DICT
- FILTER DICT
3. Simulation of Filtration Processes - Modeling

Flow simulation is based on Navier-Stokes-Brinkmann equations

\[-\mu \Delta \vec{u} + \nabla \vec{u} \cdot \vec{u} + \kappa^{-1} \vec{u} + \nabla p = \vec{f},\]
(momentum balance)

\[\nabla \cdot \vec{u} = 0,\]
(continuity)

+ boundary conditions,

\[\vec{u}: \text{ velocity}\]
\[p: \text{ pressure}\]
\[\vec{f}: \text{ force (density)}\]
\[\mu: \text{ fluid viscosity}\]
\[\kappa: \text{ permeability of porous voxel}\]

Remark

• convective term optional -> fast flow
• Brinkmann term optional -> subgrid particle deposition and effective porous media
3. Simulation of Filtration Processes - Modeling

Lagrangian Particle Transport

\[
\frac{d\vec{x}}{dt} = \vec{v} \\
\frac{d\vec{v}}{dt} = -\gamma (\vec{v}(\vec{x}) - \vec{u}(\vec{x})) + \frac{Q E_0(\vec{x})}{m} + \sigma \frac{d\vec{W}(t)}{dt} \\
\gamma = 6\pi \rho \mu \frac{R}{m} \\
\sigma^2 = \frac{2k_B T \gamma}{m} \\
\langle dW_i(t), dW_j(t) \rangle = \delta_{ij} dt
\]

Particle Deposition

- Collision handling
- Adhesion model

Modification of Geometry

- Solid deposition model (particles resolved by voxels)
- Porous deposition model (small particles)

\begin{align*}
t & : \text{time} \\
\vec{x} & : \text{particle position} \\
\vec{v} & : \text{particle velocity} \\
R & : \text{particle radius} \\
m & : \text{particle mass} \\
Q & : \text{particle charge} \\
T & : \text{temperature} \\
k_B & : \text{Boltzmann constant} \\
d\vec{W}(t) & : \text{3d probability measure} \\
E_0 & : \text{electrical field} \\
\vec{v}_0 & : \text{fluid velocity} \\
\rho & : \text{fluid density} \\
\mu & : \text{fluid viscosity}
\end{align*}
3. Simulation of Filtration Processes - Modeling

Model inherent filtration mechanisms

A) Barrier effect D) Sieving
B) Inertia effect E) Electrostatic attraction
C) Diffusion effect (Brownian motion)
3. Simulation of Filtration Processes - Modeling

1. Determine parameters of the real filter
2. Generate 3d virtual structure
3. Compute flow field
4. Compute particle transport and deposition
5. Modify geometry
6. Compute filter efficiency, pressure drop, lifetime
7. New material parameters
3. Simulation of Filtration Processes - Simulation Results

Design study of a Diesel particulate filter

- What is the effect of an additional fibrous layer on top of a sintered substrate?

- Soot particles (~80nm) are much smaller than voxels (1µm) -> porous deposition model

- Navier-Stokes-Brinkmann model to handle free and porous flow

- Permeability and maximum degree of filling of porous voxels are determined by high resolution single fiber experiments

- Some hundreds of millions of particles are needed for a lifetime computation
3. Simulation of Filtration Processes – Simulation Results

- Single Fiber Nanosimulation
- Soot Layer Cut-Out
- Effective Microproperties

- Porosity = 85 %
- Permeability = 1e-15 m^2
3. Simulation of Filtration Processes - Simulation Results

Soot Deposition
3. Simulation of Filtration Processes - Simulation Results

![Graph showing pressure drop evolution with deposited soot for depth filtration and surface filtration, comparing substrates with and without a fiber layer.](image)

Pressure Drop Evolution

- **Deposited Soot [g/m^2]**
- **Pressure Drop [Pa]**

Comparison
- **Depth Filtration**
- **Surface Filtration**

Graph Notes
- **Substrate only**
- **Substrate with fiber layer**

Institutional Logo

Fraunhofer
Institut
Techno- und Wirtschaftsmathematik
3. Simulation of Filtration Processes – Simulation Tools

- **GeoFiber**: Nonwoven generator
- **GeoSinter**: Sinter structure generator
- **GeoProcess / GeoLayer**: structure processing
- **FilterDict**: Particle filtration
- **SatuDict**: pressure-saturation relations
- **PoroDict**: Pore size distributions
4. Summary and Future Developments

Today

• Virtual structure generation
• Effective flow properties
• Filter efficiencies
• Filter lifetime
• Coupling of scales
• All methods are available by software tools

Tomorrow (DPF related)

• Extending virtual structure generation
• Coupling of length scales
• General particle shapes
• Fractional Slip Phenomena

Tomorrow (in general)

• Standard Tests
• Particle re-entry into fluid flow
• Electrostatic effects
• Particle-particle interaction
• Fluid-structure interaction

Fraunhofer Institute for Techno- and Wirtschaftsmathematik
GeoDict development teams

The GeoDict Team
Andreas Wiegmann
Jürgen Becker
Kilian Schmidt
Heiko Andrä
Ashok Kumar Vaikuntam
Rolf Westerteiger
Christian Wagner
Mohammed Alam
Jianping Shen

The FilterDict Team
Stefan Rief
Kilian Schmidt
Arnulf Latz
Andreas Wiegmann
Christian Wagner
Rolf Westerteiger

The SatuDict Team
Jürgen Becker
Volker Schulz
Andreas Wiegmann
Rolf Westerteiger

The FiberGeo Team
Andreas Wiegmann
Katja Schladitz
Joachim Ohser
Hans-Karl Hummel
Petra Baumann

WeaveGeo & PleatGeo
Andreas Wiegmann

The SinterGeo Team
Kilian Schmidt
Norman Ettrich

The ElastoDict Team
Heiko Andrä
Dimiter Stoyanov
Andreas Wiegmann
Vita Rutka
Donatas Elvikis

FlowDict Lattice Boltzmann Team
Dirk Kehrwald
Peter Klein
Dirk Merten
Konrad Steiner
Irina Ginzburg
Doris Reinel-Bitzer

FlowDict EJ Solver Team
Andreas Wiegmann
Liping Cheng
Aivars Zemitis
Donatas Elvikis
Vita Rutka
Qing Zhang

GridGeo & PackGeo
Andreas Wiegmann

The PoroDict Team
Andreas Wiegmann
Jürgen Becker
Rolf Westerteiger

The PleatDict Team
Andreas Wiegmann
Oleg Iliev
Stefan Rief

The RenderGeo Teams
Carsten Lojewski
Rolf Westerteiger
Matthias Groß

Fraunhofer
Institut Techno- und Wirtschaftsmathematik
Software for Generation, Simulation, Visualization:

GEODICT

www.geodict.com

Thank you for attending this presentation.