Simulation of Ceramic DPF Media, Soot Deposition and Pressure Drop Evolution Using \textit{GEO DICT}.

Dr. Stefan Rief
Dipl.-Math. Kilian Schmidt
Dr. Andreas Wiegmann

Fraunhofer-Institut Techno- und Wirtschaftsmathematik, Kaiserslautern
Germany
Outline

1. Virtual Structure Generation of DPFs
 - Fibrous Structures
 - Sinter Materials

2. Simulation of DPF Properties
 - Modeling and Simulation Approach
 - Example 1: Design Study of DPF Filters
 - Example 2: Micro Sieves

3. Summary
1. Virtual Structure Generation of DPFs

Multilayer Virtual Fibrous Structure

- Stochastic generation of the structure with guaranteed adjustable properties, e.g.
 - Distribution of fiber diameters and cross sections
 - Fiber orientation
 - Porosity
 - Layer thickness
 - …

- Stacking of layers with different parameters
- Use of highly flexible voxel meshes
1. Virtual Structure Generation of DPFs

Virtual Sinter Structure

- Stochastic generation based on
 - Packings of spheres
 - Morphological operations (to generate sinter necks)

- Packings of spheres selected to match the initial grain size distribution of the sinter process

- Approach was applied in an industrial project when no tomographies were available due to
 - Difficult preprocessing of samples
 - Too coarse resolution
1. Virtual Structure Generation of DPFs

SEM image

Virtual Reconstruction
1. Virtual Structure Generation of DPFs

Quality Measures for Virtual Structures

- “The Eye”
- Porosity, specific surface area
- Chord length distribution
- Pore size analysis
- Flow properties, e.g. effective permeability or flow resistivity
- Bubble point, capillary pressure curves
- Filtration properties
- Acoustic properties
2. Simulation of DPF Properties

Simulation of Filtration Processes

1. Choose initial structural parameters
2. Generate / modify structure
3. Solve CFD problem
4. Compute particle transport and deposition
5. Compute filtration efficiency and pressure drop
6. Choose new material parameters

Flow

Optimization

Single Fiber Simulation

Fraunhofer ITWM

10th WORLD FILTRATION CONGRESS
April 14 – 18, 2008 – LEIPZIG – GERMANY
2. Simulation of DPF Properties

Flow simulation is based on Navier-Stokes-Brinkmann equations

\[-\mu \Delta \tilde{u} + \nabla \tilde{u} \cdot \tilde{u} + \kappa^{-1} \tilde{u} + \nabla p = \tilde{f}, \quad \text{momentum balance}\]

\[\nabla \cdot \tilde{u} = 0, \quad \text{continuity}\]

+ boundary conditions,

\[\tilde{u} : \text{velocity}\]

\[p : \text{pressure}\]

\[\tilde{f} : \text{force (density)}\]

\[\mu : \text{fluid viscosity}\]

\[\kappa : \text{permeability of porous voxel}\]

Remark

- convective term optional -> fast flow
- Brinkmann term optional -> subgrid particle deposition and effective porous media
2. Simulation of DPF Properties

Lagrangian Particle Transport

\[\frac{d\vec{x}}{dt} = \vec{v} \]
\[\frac{d\vec{v}}{dt} = -\gamma (\vec{v}(\vec{x}) - \vec{u}(\vec{x})) + \frac{Q E_{\text{c}}(\vec{x})}{m} + \sigma \frac{d\vec{W}(t)}{dt} \]

Particle Deposition
- Collision handling
- Adhesion model

Modification of Geometry
- Solid deposition model (particles resolved by voxels)
- Porous deposition model \(\rightarrow\) small particles are handled as porous media
- Porous deposition model + subvoxel collision handling
Design Study of a Diesel Particulate Filter

• What is the effect of an additional fibrous layer on top of a sintered substrate?

• Soot particles (~80nm) are much smaller than voxels (1µm) -> porous deposition model

• Navier-Stokes-Brinkmann model to handle free and porous flow

• Permeability and maximum degree of filling of porous voxels are determined by high resolution single fiber experiments

• Several hundreds of millions of particles are needed for a lifetime computation
2. Simulation of DPF Properties

High Resolution Single Fiber Simulation

Cut-Out of Soot Layer

Fraunhofer Institut Techno- und Wirtschaftsmathematik

WFC 10 10th WORLD FILTRATION CONGRESS April 14 – 18, 2008 LEIPZIG – GERMANY
2. Simulation of DPF Properties
2. Simulation of DPF Properties

Micro Sieves – Study of Different Deposition Models

- 20 µm x 20 µm holes in periodic arrangement
- Soot particles (~80nm) are much smaller than voxels (1µm)
- Navier-Stokes-Brinkmann model to handle free and porous flow
- Comparison of porous voxel approach w/o subvoxel collision handling
2. Simulation of DPF Properties

Porous Deposition Model

Porous Deposition Model with Subvoxel Collision Handling
2. Simulation of DPF Properties

Backpressure Evolution

Filter Efficiency Evolution
2. Simulation of DPF Properties
3. Summary (and more …)

- **FiberGeo**, **SinterGeo**, **WeaveGeo**, **GridGeo**, **PackGeo** (Structure generation)
- **ProcessGeo** (3d image processing)
- **LayerGeo** (building media stacks)
- **ImportGeo** (Tomography, STL, etc.)
- **PoroDict** (Pore size analysis)
- **FlowDict** (Flow properties)
- **FilterDict** (Filtration)
- **DiffuDict** (Effective diffusion)
- **SatuDict** (Capillary pressure curves)
- **ElastoDict** (Effective elasticity)
- **ThermoDict** (Heat conductivity)
- **ExportGeo** (Fluent, Abaqus)
- **AcoustoDict** (acoustic absorption properties)
GeoDict Development Teams

The GeoDict Team
Andreas Wiegmann
Jürgen Becker
Kilian Schmidt
Heiko Andrä
Ashok Kumar Vaikuntam
Rolf Westerteiger
Christian Wagner
Mohammed Alam
Jianping Shen

The FilterDict Team
Stefan Rief
Kilian Schmidt
Arnulf Latz
Andreas Wiegmann
Christian Wagner
Rolf Westerteiger

The FiberGeo Team
Andreas Wiegmann
Katja Schladitz
Joachim Ohser
Hans-Karl Hummel
Petra Baumann

GridGeo & PackGeo
Andreas Wiegmann

FlowDict Lattice Boltzmann Team
Dirk Kehrwald
Peter Klein
Dirk Merten
Konrad Steiner
Irina Ginzburg
Doris Reinel-Bitzer

WeaveGeo & PleatGeo
Andreas Wiegmann

The SinterGeo Team
Kilian Schmidt
Norman Ettrich

The ElastoDict Team
Heiko Andrä
Dimitar Stoyanov
Andreas Wiegmann
Vita Rutka
Donatas Elvikis

FlowDict EJ Solver Team
Andreas Wiegmann
Liping Cheng
Aivars Zemitis
Donatas Elvikis
Vita Rutka
Qing Zhang

The Porodict Team
Andreas Wiegmann
Jürgen Becker
Rolf Westerteiger

The SatuDict Team
Jürgen Becker
Volker Schulz
Andreas Wiegmann
Rolf Westerteiger

The RenderGeo Teams
Carsten Lojewski
Rolf Westerteiger
Matthias Groß

The PoroDict Team
Andreas Wiegmann
Jürgen Becker
Rolf Westerteiger

The PleatDict Team
Andreas Wiegmann
Oleg Iliev
Stefan Rief

Rolf Westerteiger

The RenderGeo Teams
Heiko Andrä
Dimitar Stoyanov
Andreas Wiegmann
Vita Rutka
Donatas Elvikis

WFC 10
10th WORLD FILTRATION CONGRESS
April 14 – 18, 2008 · LEIPZIG – GERMANY
Software for Generation, Simulation, Visualization:

GEO DICT

www.geodict.com

Thank You Very Much for Your Attention!