Determination of Material Parameters of Gas Diffusion Layers by Combining Pore-Morphology Method and Single Phase Simulations

PEMSim Berlin, 18.-20.09.2006

Jürgen Becker, Oleg Iliev, Volker Schulz, Konrad Steiner, Andreas Wiegmann

Fraunhofer ITWM, Kaiserslautern

Introduction

Starting Point:

- three dimensional model of GDL fibre/pore structure given
- origin of 3d model:
 - reconstructed from a 3d tomography image
 - virtually created model

Aim

- determine saturation dependent effective material parameters:
 - capillary pressure $p_c(s)$
 - permeability K(s)
 - diffusivity coefficients D(s)
 - thermal conductivities $\beta(s)$

Idea:

- use pore morphology method to determine phase distributions
- use single phase simulations to determine material parameters

Pore Morphology Method

ingredient 1:

– Young – Laplace equation $p_c=rac{2\sigma}{r}\cos\beta$

idea: a pore is filled with the NWP, if

$$p_c \ge \frac{2\sigma}{r} \cos \beta$$

Pore Morphology Method

ingredient 2:

image analysis to determine pore sizes

X : pore space

 B_r : structuring element (e.g. spheres of radius r)

morphological opening: $\mathcal{O}_{B_r}(X) = \bigcup_{B_r \subseteq X} B_r$

Opening = Dilation (Erosion)

$$\mathcal{O}_{B_r}(X) = \mathcal{D}_{B_r}(\mathcal{E}_{B_r}(X)),$$

$$\mathcal{E}_{B_r}(X) = \{x | B_r(x) \subseteq X\}$$

$$\mathcal{D}_{B_r}(X) = \{x | B_r(x) \cap X \neq \emptyset\}$$

phase distribution: non-wetting phase $\mathcal{O}_{B_r}(X)$, wetting phase $X\setminus\mathcal{O}_{B_r}(X)$

Pore Morphology Method (Algorithm)

algorithm:

- 1. start configuration
- 2. erode pore space
- 3. eroded pore space has to be connected with non-wetting phase reservoir
- 4. dilate remaining pore space
- 5. final result

Pore Morphology Method (Drainage)

Non-wetting phase reservoir

- starting point: pore space completely filled with wetting fluid
- determine pore space occupied by nonwetting fluid for increasing pressure (decreasing pore radius)

Pore Morphology Method (3D)

<u>"drainage"</u>: only pores connected to the NWP reservoir are filled with the NWP

<u>"imbibition"</u> (or repeated drainage+imbibition): all pores large enough are filled with the NWP

porous media

"imbibition"

"drainage (top)"

Assumptions:

- interface between wetting phase and non-wetting phase is assumed to be spherical (or a superposition of spheres)
- no residual wetting phase
- ullet contact angles other than 0 are reflected only by the "factor" $\cos \beta$ in the Young-Laplace equation

general approach:

first step:

use pore morphology method to determine phase distributions for varying capillary pressures

- phase distribution is assumed to be stationary
- solve single-phase microscopic equations in the corresponding phase space
- determine macroscopic material parameters via upscaling

capillary pressure curve $p_c(s)$:

first step:

use pore morphology method to determine phase distributions for varying capillary pressures
 saturation levels already determined

permeability (wetting phase):

first step:

use pore morphology method to determine phase distributions for varying capillary pressures

- phase distribution is assumed to be stationary
- solve Stokes equation $-\eta\Delta u+\nabla p=0$ in the space occupied by the WP
- determine average velocity from the results and calculate permeability K(s) using Darcy's law

permeability (non-wetting phase):

first step:

use pore morphology method to determine phase distributions for varying capillary pressures

- phase distribution is assumed to be stationary
- solve Stokes equation $-\eta\Delta u+\nabla p=0$ in the space occupied by the NWP
- determine average velocity from the results and calculate permeability K(s) using Darcy's law

diffusivity:

first step:

use pore morphology method to determine phase distributions for varying capillary pressures

- phase distribution is assumed to be stationary
- solve Laplace equation $-\Delta c = 0$ in the space occupied by the WP.
- determine macroscopic diffusivity coefficients D(s) via upscaling

thermal conductivities:

first step:

use pore morphology method to determine phase distributions for varying capillary pressures

- phase distribution is assumed to be stationary
- solve heat transport equation $-\nabla(\tilde{\beta}\nabla u)=0$ in the complete space, with discontinuous coefficient $\tilde{\beta}$ (differs for gas, water and fibres).
- determine macroscopic heat transport coefficient $\beta(s)$ via upscaling

Example: 3D tomography image of a Gas Diffusion Layer

- material:
 - carbon fibres of diameter ~ 7 μm
 - hydrophobic PTFE coating
 - porosity 78%
 - layer thickness ~ 200 μm
- 3D data
 - synchrotron tomography by ANKA GmbH (Karlsruhe)
 - picture shows area of size 717x717 μ m
 - resolution: 0.7 μm/voxel

GDL: Capillary Pressure – Saturation

used parameter:

• contact angle: 140°

results:

•bubble point (drainage): 8.8 kPa

•saturation at bubble point: 20.8%

GDL: Thermal Conductivity (Results)

• averaged results over 3 cut-outs with 256 x 256 x 300 voxels

parameters used:

- water :0.606 W/Km

- air: 0.0262 W/Km

- fibres: 17 W/Km

A Reduced Model for Compression

GDL: Water Distribution (uncompressed and 40% compressed)

pc= 10.6 kPa

 $(r=10.5 \mu m)$

Capillary Pressure Curve

- Imbibition
- 1024x1024x300

Permeability

- •through-plane
- 512x512x300
- imbibition

Diffusivity

- •through-plane
- 512x512x300
- imbibition

Summary

- starting point:
 - synchrotron tomography image
 - virtually generated fibre structure
- calculated effective material parameters:
 - pore size distribution
 - bubble point
 - capillary pressure saturation relation
 - (relative) gas diffusivity tensor
 - (relative) permeability (wetting and non-wetting phase)
 - (relative) thermal conductivities
- results can be used in macroscopic CFD simulations

