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Introduction

Starting Point:Starting Point:Starting Point:Starting Point:
• three dimensional model of GDL fibre/pore structure given

• origin of 3d model:

– reconstructed from a 3d tomography image

– virtually created model

AimAimAimAim: 

• determine saturation dependent effective material parameters:

– capillary pressure pc(s)

– permeability K(s)

– diffusivity coefficients D(s)

– thermal conductivities β(s)

IdeaIdeaIdeaIdea: 
• use pore morphology method to determine phase distributions

• use single phase simulations to determine material parameters 
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Pore Morphology Method

ingredient 1:

– Young – Laplace equation

idea: a pore is filled with the NWP, if 

non-wetting fluid

wetting
fluid

r

β
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Pore Morphology Method

ingredient 2:

– image analysis to determine pore sizes

: pore space

: structuring element (e.g. spheres of radius r)

morphological opening: 

phase distribution:  non-wetting phase                    , wetting phase 

Opening = Dilation (Erosion) 
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Pore Morphology Method (Algorithm)

algorithm :

1. start configuration

2. erode pore space

3. eroded pore space has to be connected with 

non-wetting phase reservoir

4. dilate remaining pore space

5. final result 
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Wetting phase reservoir

Non-wetting phase reservoir

C
lo
se
d

Bubble point!

Pore Morphology Method (Drainage)

• starting point: pore space completely filled 

with wetting fluid

• determine pore space occupied by non-

wetting fluid for increasing pressure 

(decreasing pore radius)
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Pore Morphology Method (3D)

Assumptions:

• interface between wetting phase

and non-wetting phase is assumed to 

be spherical (or a superposition of 

spheres)

• no residual wetting phase

• contact angles other than 0 are

reflected only by the “factor“ cos β  in 

the Young-Laplace equation

porous media          “imbibition” “drainage (top)”

“drainage”: only pores connected to the NWP 

reservoir are filled with the NWP

“imbibition” (or repeated drainage+imbibition) :  

all pores large enough are filled with the NWP
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

general approach:

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

for each cap. pressure:

– phase distribution is assumed to be stationary

– solve single-phase microscopic equations in the corresponding phase space

– determine macroscopic material parameters  via upscaling
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

capillary pressure curve pc(s) :

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

saturation levels already determined 
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

permeability (wetting phase):

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

for each cap. pressure:

– phase distribution is assumed to be stationary

– solve Stokes equation                                        in the space occupied by the WP

– determine average velocity from the results and calculate permeability K(s) using Darcy’s law
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

permeability (non-wetting phase):

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

for each cap. pressure:

– phase distribution is assumed to be stationary

– solve Stokes equation                                        in the space occupied by the NWP

– determine average velocity from the results and calculate permeability K(s) using Darcy’s law
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

diffusivity:

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

for each cap. pressure:

– phase distribution is assumed to be stationary

– solve Laplace equation                       in the space occupied by the WP.

– determine macroscopic diffusivity coefficients D(s) via upscaling
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Using the Pore Morphology Method to Determine Saturation 
Dependent Material Parameters

thermal conductivities:

first step: 

– use pore morphology method  to determine phase distributions for varying capillary pressures

for each cap. pressure:

– phase distribution is assumed to be stationary

– solve heat transport equation                                in the complete space, with discontinuous 

coefficient        (differs for gas, water and fibres).

– determine macroscopic heat transport coefficient β(s) via upscaling
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Example: 3D tomography image of a Gas Diffusion Layer 

• material:

– carbon fibres of diameter ~ 7 µm

– hydrophobic PTFE coating

– porosity 78%

– layer thickness ~ 200 µm

• 3D data

– synchrotron tomography by ANKA GmbH 

(Karlsruhe)

– picture shows area of size 717x717 µm

– resolution: 0.7 µm/voxel
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GDL: Capillary Pressure – Saturation 

used parameter:

• contact angle:  140°

results:

•bubble point (drainage): 8.8 kPa

•saturation at bubble point: 20.8%
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GDL: Thermal Conductivity (Results)

parameters used:

– water :0.606  W/Km

– air: 0.0262 W/Km

– fibres: 17 W/Km
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• averaged results over 3 cut-outs 

with 256 x 256 x 300 voxels
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A Reduced Model for Compression 

uncompressed 15% compression 30% compression
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GDL: Water Distribution (uncompressed and 40% compressed)

pc= 10.6 kPa

(r=10.5 µm)
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Capillary Pressure Curve
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Permeability
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Diffusivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Saturation (water)

D
if

fu
s

iv
it

y
 (

%
)

uncompressed

20% compr.

40% compr.

•through-plane

• 512x512x300

• imbibition



Seite 28

Summary

• starting point: 
– synchrotron tomography image 
– virtually generated fibre structure

• calculated effective material parameters:
– pore size distribution
– bubble point
– capillary pressure – saturation relation
– (relative) gas diffusivity tensor
– (relative) permeability (wetting and non-wetting phase)
– (relative) thermal conductivities

• results can be used in macroscopic CFD simulations


