Computational Study of Dependence of Pressure Drop on Pleat Shape and Filter Media

Andreas Wiegmann, PhD wiegmann@itwm.fhg.de

Dr. Stefan Rief rief@itwm.fhg.de

Dr. Dirk Kehrwald kehrwald@itwm.fhg.de

Wiesbaden, February 27th, 2007.

Designing filter pleats via simulation

How to design filter pleats via simulation

I How to design a pleat? – Macro scale geometry and permeability

II How to compute the pressure drop? – Macro scale pressure and velocity distributions.

III Where do particles deposit? - Macro scale size-dependent deposition location.

Scope for today.

I What is a pleat, how does the modelling work?

nd the media permeability.

Outflow region: "2" ½ channels

I Pleat design parameters

Fixed number of 2.5 mm pleats

- Pleat radii
- Pleat length
- Media Thickness

II Flow: Stokes-Brinkmann equations

$$-\mu\Delta\vec{u} + \nabla p + \kappa^{-1}\vec{u} = \vec{f}$$
 (momentum balance)

$$\nabla \cdot \vec{u} = 0$$
 (mass conservation)

$$\vec{\mathbf{f}} = (0, 0, f)$$
 : force in flow(z)-direction,

$$\kappa = \kappa(x, y, z)$$
 : porous voxel permeability,

 $ec{u}$: velocity,

 μ : fluid viscosity and

p: pressure.

Same approach as on the micro scale!

The force corresponds to a mean flow velocity. The equations can be solved with a Lattice-Boltzmann method with periodic boundary conditions if the cutout is large enough and enough empty space is added in front and back.

II A shorter pleat has lower pressure drop

Pressure drop: 71 kPa

Pressure drop: 52 kPa

II Lower permeability in the fold yields higher pressure drop

Pressure drop: 71 kPa

Pressure drop: 82 kPa

II Short pleat and low permeability almost balance

Pressure drop: 71 kPa

Pressure drop: 64 kPa

Il Scope of the pleat design and flow computations

 Agreement with measurements is excellent, one industrial partner is considering to file a patent partly based on joint work using this type of simulation.

• Approach is possible because velocities are low, no boundary layers or vortices occur.

The simulation is not limited to pleats: One application under consideration are diesel

particulate filters:

III Lagrangian description of particle motion: Considers inertia via friction and diffusion via Brownian motion

$$d\vec{v} = -\gamma \times (\vec{v}(\vec{x}) - \vec{v}_{\circ}(\vec{x})) dt + \sigma \times d\vec{W}(t)$$

$$\frac{d\vec{x}}{dt} = \vec{v}$$

$$\gamma = 6\pi\rho\mu \frac{R}{m} \qquad t: \quad \text{time}$$

$$\sigma^2 = \frac{2k_BT\gamma}{m} \qquad \vec{v}: \quad \text{particle } \vec{v}$$

$$\sigma^2 = \frac{2k_B T \gamma}{m}$$

$$\langle dW_i(t), dW_j(t) \rangle = \delta_{ij}dt$$

particle position

 $ec{v}$: particle velocity

R: particle radius

particle mass m:

T: ambient temperature

 k_B : Boltzmann constant

 $d\vec{W}(t)$: 3d probability (Wiener) measure

 $\vec{v}_{
m o}$: fluid velocity

fluid density ρ :

fluid viscosity μ :

Same approach as on the micro scale!

Fraunhofer Institut Techno- und Wirtschaftsmathematik Wiesbaden,

February 27th, 2007

III Stream lines and tracked particles

At the moment, particles are collected as they enter the porous media.

III Stream lines for transparent media, and particle "media entrance" positions

At the moment, particles are collected as they enter the porous media.

III Particle "entrance" location over the pleat for uniform and non-uniform permeability.

III Scope of the particle deposition simulation

- Consider fluid viscosity air, oil, etc. are possible
- Consider varying particle sizes, inertia and diffusion are represented
- Consider pleat shape
- Consider media thickness and permeability
- Could easily introduce layers for the media

At the moment, particles are collected as they enter the porous media.

This information can be used as input into micro scale simulations.

On the micro scale particles are deposited, the local filter efficiency is computed and a local permeability under loading is computed.

This permeability is found in various regions of the pleat, and then inserted back into the pleat scale simulation.

A new pressure drop, new velocity field, and finally new particle entrance positions are computed.

At the moment, particles are collected as they enter the porous media.

This information can be used as input into micro scale simulations.

On the micro scale particles are deposited, the local filter efficiency is computed and a local permeability under loading is computed.

This permeability is found in various regions of the pleat, and then inserted back into the pleat scale simulation.

A new pressure drop, new velocity field, and finally new particle entrance positions are computed.

At the moment, particles are collected as they enter the porous media.

This information can be used as input into micro scale simulations.

On the micro scale particles are deposited, the local filter efficiency is computed and a local permeability under loading is computed.

This permeability is found in various regions of the pleat, and then inserted back into the pleat scale simulation.

A new pressure drop, new velocity field, and finally new particle entrance positions are computed.

At the moment, particles are collected as they enter the porous media.

This information can be used as input into micro scale simulations.

On the micro scale particles are deposited, the local filter efficiency is computed and a local permeability under loading is computed.

This permeability is found in various regions of the pleat, and then inserted back into the pleat scale simulation.

A new pressure drop, new velocity field, and finally new particle entrance positions are computed.

IV Summary and outlook

- Parameterized pleat model based on voxels
- Grid generation simple and automatic due to the use of cubic grid cells
- Pressure drop computation agrees with (confidential) measurements, can be tried after Software release (in 2007).
- Simulation of particle media entrance location is a mile stone on the way to filter efficiency and filter capacity simulations on the pleat level

GeoDict development teams

The GeoDict Team

Andreas Wiegmann
Jürgen Becker
Kilian Schmidt
Heiko Andrä
Ashok Kumar Vaikuntam
Rolf Westerteiger
Christian Wagner
Mohammed Alam
Jianping Shen

The PoroDict Team

Andreas Wiegmann Jürgen Becker Rolf Westerteiger

The FilterDict Team

Stefan Rief
Kilian Schmidt
Arnulf Latz
Andreas Wiegmann
Christian Wagner
Rolf Westerteiger
Stephan Nowatschin

The SatuDict Team

Jürgen Becker Volker Schulz Andreas Wiegmann Rolf Westerteiger

The PleatDict Team

Andreas Wiegmann Oleg Iliev Stefan Rief

The FiberGeo Team

Andreas Wiegmann Katja Schladitz Joachim Ohser Hans-Karl Hummel Petra Baumann

WeaveGeo & PleatGeo

Andreas Wiegmann

The SinterGeo Team

Kilian Schmidt Norman Ettrich

The RenderGeo Teams

Carsten Lojewski Rolf Westerteiger Matthias Groß

The Lattice Boltzmann Team

Dirk Kehrwald
Peter Klein
Dirk Merten
Konrad Steiner
Irina Ginzburg
Doris Reinel-Bitzer

The Elastic Solver Team

Heiko Andrä Dimiter Stoyanov

The EJ Solver Team

Andreas Wiegmann Liping Cheng Aivars Zemitis Donatas Elvikis Vita Rutka Qing Zhang

Fraunhofer Institut
Techno- und
Wirtschaftsmathematik

Find out more:

www.geodict.com

Thank you for attending this presentation.

