Design of Fibrous Filter Media Based on the Simulation of Pore Size Measures

Fraunhofer

Institut
Techno- und
Wirtschaftsmathematik

Design of Fibrous Filter Media Based on the Simulation of Pore Size Measures

FILTECH 2007, Wiesbaden

Jürgen Becker,

Andreas Wiegmann,

Volker Schulz

Design of Fibrous Filter Media Based on the Simulation of Pore Size Measures

Overview:

- Pore size distribution(s)
- Simulation of mercury intrusion porosimetry (MIP)
- Simulation of liquid extrusion porosimetry (LEP)
- Comparison of results

Pore Size Distribution

simple geometry:

Pore sizes well defined and easy to measure

How to define a pore size ?

What is measured?

Defining Pore Sizes - Geometric Approach

Pore space : X

Opening of radius r:

$$O_r(X) = \bigcup_{B_{r,x} \subset X} B_{r,x}$$

Volume of pores with radius $r_1 \leq r \leq r_2$:

$$O_{r_1}(X) - O_{r_2}(X)$$

dark grey: $r \ge 20$

light grey: $16 \le r < 20$

Defining Pore Sizes - Geometric Approach

Pore space : X

Opening of radius r:

$$O_r(X) = \bigcup_{B_{r,x} \subset X} B_{r,x}$$

Volume of pores with radius $r_1 \leq r \leq r_2$:

$$O_{r_1}(X) - O_{r_2}(X)$$

dark grey: $r \ge 20$

light grey: $16 \le r < 20$

Defining Pore Sizes - Geometric Approach

Pore space : X

Opening of radius r:

$$O_r(X) = \bigcup_{B_{r,x} \subset X} B_{r,x}$$

Volume of pores with radius $r_1 \leq r \leq r_2$:

$$O_{r_1}(X) - O_{r_2}(X)$$

dark grey: $r \ge 20$

light grey: $16 \le r < 20$

Mercury Intrusion Porosimetry

• mercury (non-wetting) fills the pores, if pressure becomes large enough:

$$p = \frac{4\gamma}{d}\cos\theta$$

• volume of intruding mercury gives pore size distribution

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

- pores filled with mercury are a subset of $O_r(X)$
- pores filled must be connected to the mercury reservoir

algorithm: fast and efficient!

- erode the pore space by *r* to find possible centre points
- remove parts unconnected to reservoir
- \bullet dilate the remaining pore space by r

Comparison of MIP Simulation and Geometric Approach

Liquid Extrusion Porosimetry

- sample and membrane initially filled with wetting liquid.
- air is pressed into the pores and fills pores with large enough diameter:

$$p = \frac{4\gamma}{d}\cos\theta$$

• volume of extruded liquid is used to calculate pore size distribution

Simulation can use methods developed for MIP (but other reservoir position)

3D Sample Structure

virtually created 3D fibre structure:

- fibre diameter $7\mu m$
- porosity 82%
- highly anisotropic

Results of the Simulation

Dependence of Pore Size Distribution on Design Parameters (Example)

- virtually created fibre media with different porosities (75%, 82%, 88%).
- chart shows results of simulated MIP.

Comparison of Measurement and Simulation

Measurement: MIP

Simulation:

• virtually created fibre structure using known values for porosity and fibre thickness

distribution.

• simulated MIP

Summary / References

- Different measurement techniques measure different "Pore Size Distributions" (see A. Jena, K. Gupta, Fluid Particle Separation J. 4, 2002, pp. 227-241)
- MIP and LEP results can be predicted numerically.
- Both techniques underestimate the number of large pores when compared to a purely geometric approach
- Software used: GEO DICT (www.geodict.com)

Flow Porometry (??)

