Design of Pleated Filters by Computer Simulations

Fraunhofer

Institut
Techno- und
Wirtschaftsmathematik

Andreas Wiegmann,

Liping Cheng,

Erik Glatt,

Oleg Iliev and

Stefan Rief

= Fraunhofer Institute for Industrial Mathematics

Overview

- 3d Pleat model and its input parameters
- Flow model: computation of the pressure drop
- Results for air filtration 2d parameter studies
- Results for oil filtration influence of 3d support structure

Model for pleats and flow

Shape Pleat Options

General Pleat Options

Weave Pleat Options

Netting Pleat Options

Pressure Drop Optimization by Chen et al.¹

Pleat heights: 0.875, 1.75, 3.5 and 5.25 inch

Pleat **counts**: 2, 3, 4,..., 20 pleats / inch

Pleat media: 252, 213, 233, 220, 224, 229

Height 0.875 in ¹Chen, Pui and Liu, Aerosol Science and Technology, 1995

Grade no.	DOP Efficiency	Permeability [m²]	Thickness	Base weight
252	99.99 % ULPA	7.25e-13	0.38	73
213	99.985 % HEPA	1.03e-12	0.38	73
233	98.5 %	2.26e-12	0.38	73
220	95 %	3.20e-12	0.38	73
224	90-95% ASHRAE	7.67e-12	0.38	73
229	80-90 % ASHRAE	1.10e-11	0.38	73

Pressure Drop Optimization translated to GeoDict

Heights: 0.875, 1.75, 3.5 and 5.25 inch = 0.2224, 0.04448, 0.08888 and 0.13336 meter

Counts: 2, 3, 4,..., 20 pleats / inch ~ 2*(0.00336+0.00296), ... meter pleat width

Media: 252, 213, 233, 220, 224, 229 ~ 7.25e-13, ... meter² permeability

```
GeoDict: VaryMacro {
  FileName pui.gvm
  NumberOfVariables 7
  Variable1: ValueList 7.25e-13,1.03e-12,2.26e-12,3.20e-12,7.68e-12,1.10e-11
  Variablel:CoupledWith NONE
  Variable2: ValueList 0.02224,0.04448,0.08888,0.13336
  Variable2:CoupledWith NONE
  Variable3: ValueList 0.00336,0.00232,0.00176,0.00144,0.00128,0.00112,0.00096,0.00088,0.00080,0.00072,0.00064,0.00056,0.00056,0.00048
  Variable3:CoupledWith NONE
  Variable4:ValueList 0.00296,0.00192,0.00136,0.00112,0.00088,0.00072,0.00064,0.00048,0.00048,0.00032,0.00024,0.00024,0.00016,0.00016
  Variable4:CoupledWith 3
  Variable5: ValueList 252,213,233,220,224,229
  Variable5:CoupledWith 1
  Variable6: ValueList 0.875in, 1.750in, 3.500in, 5.250in
  Variable6:CoupledWith 2
  Variable7: ValueList 2, 3, 4, 5, 6, 7, 8, 9,10,12,14,16,18,20
  Variable7:CoupledWith 3
```

Commands: structure generation and pressure drop computation

```
PleatGeo: WithoutSupportingMesh {
FileName
InflowRegion 0.001
MediaThicknessl 0.0004
MediaThickness2 0
MediaThickness3 0
MediaThickness4 0
MediaThickness5 0
NumberLayers 1
OutflowRegion 0.001
PleatDepth oe 95
PleatHeight %2
PleatMateriall 1
PleatMaterial2 0
PleatMaterial3 0
PleatMaterial4 0
PleatMaterial5 0
PleatOpeningAngle 0
PleatRadiusl %3
PleatRadius2 %4
VoxelLength 8e-05
```

```
PleatDict:SolveEFVStokesBrinkmann {
NumberOfNodes 1
Parameters: FluidDensity 1.204
Parameters: FluidViscosity 1.834e-05
Parameters: MeanVelocity 0.508
Parameters: PressureDifference 0.02
Parameters: PressureEnabled 8
Permeabilities:Colorl %1,%1,%1
Permeabilities:Color10 0.0.8
Permeabilities:Color11 0,0,0
Permeabilities:Color12 0,0,0
Permeabilities:Color13 0,0,0
Permeabilities:Color14 0,0,0
Permeabilities:Color15 0,0,0
Permeabilities:Color2 0.0.0
Permeabilities:Color3 0,0,0
Permeabilities:Color4 0,0,0
Permeabilities:Color5 0,0,0
Permeabilities:Color6 0,0,0
Permeabilities:Color7 0,0,0
Permeabilities:Color8 0,0,0
Permeabilities:Color9 0,0,0
RelaxationPressure 0.8
RelaxationVelocity 0.5
SolverData: Accuracy 1e-05
SolverData: AddedFreeSpace 0
SolverData:DirectionEnabledX 0
SolverData: DirectionEnabledY 0
SolverData:DirectionEnabledZ 1
Solverbata:DiscardTemporaryFiles &
SolverData:FileName Pleat %5 %6 %7.gdr
SolverData:MaxNumberOfIterations 186000
SolverData:MirrorVolume 0
SolverData: NumberOfProcesses 8
SolverData: PermeabilityCheckInterval 20
SolverData:Restart 0
SolverData:RestartFileName
SolverData:ScalingType 1
SolverData:ScalingValue 1
SolverData:SlipLength 0
SolverData:SolverType 0
SolverData: StoppingCriterion 1
```

Stokes-Brinkmann formulation

$$-\mu \Delta \mathbf{u} + \nabla (p+dz) + K^{-1} \mathbf{u} = 0 \text{ in } \Omega \setminus G, \\ \nabla \cdot \mathbf{u} = 0 \text{ in } \Omega \setminus G, \\ \mathbf{u}(x+il_x,y+jl_y,z+kl_z) = \mathbf{u}(x,y,z) \text{ for } i,j,k \in \mathbb{Z} \\ p(x+il_x,y+jl_y,z+kl_z) = p(x,y,z) \text{ for } i,j,k \in \mathbb{Z} \\ \mathbf{u} = 0 \text{ on solid surface } \partial G \\ G = \text{solid cells (green or blue)} \\ \mu = \text{viscosity,} \\ \mathbf{u} = \text{velocity,} \\ p = \text{pressure} \\ K = \text{permeability} = \begin{cases} \begin{bmatrix} \infty & 0 & 0 \\ 0 & \infty & 0 \\ 0 & 0 & \infty \end{bmatrix} & \text{in empty cells} \\ \begin{bmatrix} \kappa_c & 0 & 0 \\ 0 & \kappa_c & 0 \\ 0 & 0 & \kappa_c \end{bmatrix} & \text{in red (c=1) or yellow (c=2) cells,} \end{cases}$$

Stokes-Brinkmann on the staggered (MAC) grid

Green	solid cells
Red	permeable cells
Empty	empty cells
Circles	horizontal component of velocity
Squares	vertical component of velocity
Stars	pressure
Solid black	set variable to zero
Yellow periodic boundary condition	
Blue	no-slip on green in normal direction
Magenta no-slip tangential direction	

$$-\mu \frac{U_{i-1,k} + U_{i,k-1} - 4U_{i,k} + U_{i+1,k} + U_{i,k+1}}{h^2} + \frac{P_{i,k} - P_{i-1,k}}{h} + \left(\frac{\kappa_{i-1,k}^{-1} + \kappa_{i,k}^{-1}}{2}\right)^{-1} U_{i,k} = 0,$$

$$-\mu \frac{W_{i-1,k} + W_{i,k-1} - 4W_{i,k} + W_{i+1,k} + W_{i,k+1}}{h^2} + \frac{P_{i,k} - P_{i,k-1}}{h} + \left(\frac{\kappa_{i,k-1}^{-1} + \kappa_{i,k}^{-1}}{2}\right)^{-1} W_{i,k} = -d,$$

$$\frac{U_{i+1,k} - U_{i,k}}{h} + \frac{W_{i,k+1} - W_{i,k}}{h} = 0.$$

Periodic Boundary Conditions

$$\frac{U_{2,4} - U_{1,4}}{h} + \frac{W_{1,5} - W_{1,4}}{h} = \frac{U_{2,4} - U_{1,4}}{h} + \frac{W_{1,0} - W_{1,4}}{h} = 0$$

$$-\mu \underbrace{\frac{U_{0,4} + U_{1,3} - 4U_{1,4} + U_{2,4} + U_{1,5}}{h^2} + \frac{P_{1,4} + P_{0,4}}{h}}_{-\mu \underbrace{\frac{U_{4,4} + U_{1,3} - 4U_{1,4} + U_{2,4} + U_{1,1}}{h^2} + \frac{P_{1,4} - P_{4,4}}{h}}_{= 0} = 0$$

No-slip Boundary Conditions in the normal direction

$$-\mu \frac{U_{1,3} + U_{2,2} - 4U_{2,3} + V_{3,3} + U_{2,4}}{h^2} + \frac{P_{2,3} - P_{1,3}}{h} = -\mu \frac{U_{1,3} + U_{2,2} - 4U_{2,3}}{h^2} + \frac{U_{2,4}}{h} + \frac{P_{2,3} - P_{1,3}}{h} = 0.$$

No-slip in the tangential direction

$$-W_{2,3}$$

$$-\mu \frac{W_{1,3} + W_{2,2} - 4W_{2,3} + W_{3,3} + W_{2,4}}{h^2} + \frac{P_{2,3} - P_{2,2}}{h} = -\mu \frac{W_{1,3} + W_{2,2} - 5W_{2,3}}{h^2} + \frac{W_{2,4}}{h} + \frac{P_{2,3} - P_{2,2}}{h} = -d.$$

SIMPLE Method, part I

$$\begin{split} a_{i,k}^{U}U_{i,k}^{*} &= \sum a_{nb}^{U}U_{nb}^{*} + (P_{i-1,k}^{*} - P_{i,k}^{*})A_{i,k}^{U} + b_{i,k}^{U} \\ a_{i,k}^{W}W_{i,k}^{*} &= \sum a_{nb}^{W}W_{nb}^{*} + (P_{i,k-1}^{*} - P_{i,k}^{*})A_{i,k}^{W} + b_{i,k}^{W}, \\ P &= P^{*} + P' \\ U &= U^{*} + U' \\ V &= W^{*} + W'. \end{split}$$

$$a_{i,k}^{U}U_{i,k}' &= \sum a_{nb}^{U}U_{nb}' + (P_{i-1,k}' - P_{i,k}')A_{i,k}^{U} \\ a_{i,k}^{W}W_{i,k}' &= \sum a_{nb}^{W}W_{nb}' + (P_{i,k-1}' - P_{i,k}')A_{i,k}^{W}. \end{split}$$

$$U_{i,k}' &= (P_{i-1,k}' - P_{i,k}')\frac{A_{i,k}^{U}}{a_{i,k}^{U}} \\ W_{i,k}' &= (P_{i,k-1}' - P_{i,k}')\frac{A_{i,k}^{W}}{a_{i,k}^{W}}. \end{split}$$

SIMPLE Method, part II

$$U_{i,k} = U_{i,k}^* + (P'_{i-1,k} - P'_{i,k}) \frac{A_{i,k}^U}{a_{i,k}^U}$$

$$W_{i,k} = W_{i,k}^* + (P'_{i,k-1} - P'_{i,k}) \frac{A_{i,k}^W}{a_{i,k}^W},$$

$$U_{i+1,k} = U_{i+1,k}^* + (P'_{i,k} - P'_{i+1,k}) \frac{A_{i+1,k}^U}{a_{i+1,k}^U}$$

$$W_{i,k+1} = W_{i,k+1}^* + (P'_{i,k} - P'_{i,k+1}) \frac{A_{i,k+1}^W}{a_{i,k+1}^W}.$$

$$a_{i,k}^{P}P_{i,k}' = a_{i+1,k}^{P}P_{i+1,k}' + a_{i-1,k}^{P}P_{i-1,k}' + a_{i,k+1}^{P}P_{i,k+1}' + a_{i,k-1}^{P}P_{i,k-1}' + b_{i,k}^{P},$$

$$b_{i,k}^{P} = U'_{i+1,k} - U'_{i,k} + W'_{i,k+1} - W'_{i,k},$$

$$a_{i,k}^{P} = a_{i+1,k}^{P} + a_{i-1,k}^{P} + a_{i,k+1}^{P} + a_{i,k-1}^{P}.$$

Pressure Drop Optimization by Chen et al.¹

Pleat heights: 0.875, 1.75, 3.5 and 5.25 inch

Pleat **counts**: 2, 3, 4,..., 20 pleats / inch

Pleat media: 252, 213, 233, 220, 224, 229

Grid resolution: 8 µm ~ 5 cells.

Domains: from 16 x 1 x 303 cells

to

Height 0.875 in 158 x 1 x 1692 cells

¹Chen, Pui and Liu, Aerosol Science and Technology, 1995

Grade no.	DOP Efficiency	Permeability [m²]	Thickness	Base weight
252	99.99 % ULPA	7.25e-13	0.38	73
213	99.985 % HEPA	1.03e-12	0.38	73
233	98.5 %	2.26e-12	0.38	73
220	95 %	3.20e-12	0.38	73
224	90-95% ASHRAE	7.67e-12	0.38	73
229	80-90 % ASHRAE	1.10e-11	0.38	73

Magnitude of Velocity and Pressure Drop for varying inlet length

- Velocity: 100 fpm (0.508 m/s)
- Pressure in Pascal

- air at 20°C.
 density 1.2 kg/m³
 viscosity 1.5e-5 m²/s
- Media 213
 Height 0.875 in
 Pleat count 4 / in

Magnitude of velocity

2.73e-01 4.09e-01 5.45e-01 6.82e-01 8.18e-01 9.55e-01 1.09e+00 1.23e+00 1.36e+00 1.50e+00

Inlet 1 mm Pressure

Magnitude of velocity

Inlet 9 mm

Pressure

Magnitude of velocity

Inlet 17 mm

Pressure

Pressure drop for 6 media, different heights and pleat counts

Lydall Grade no. 252 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Lydall Grade no. 233 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Lydall Grade no. 229 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Lydall Grade no. 224 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Lydall Grade no. 220 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Lydall Grade no. 213 compared with Chen at al.

- Great quantitative agreement
- For low pleat count, high pleat is better
- For high pleat count, low pleat is better

Validation of oil simulations.

- Comparison with ITWM's SuFiS software:
 Deviation systematically 3 % lower than SuFiS.
- SuFiS is validated for many years in collaboration with IBS Filtran.
 See also talk by Dr. Iliev.
- Changing to symmetry boundary conditions (doubles the domain):
 Within 1 % of SuFiS value.

Oil flow in pleats with support structure: velocity

- Velocity: 0.15 m/s
- Oil: density 850 kg/m³ viscosity 0.17 m²/s
- Same pleat count
- Different in- and outflow channel widths
- Grid resolution 40 µm
- 50 x 70 x 380 cells

Narrow Channel

Thick Wire

Thin Wire

Oil flow in pleats with support structure: pressure

- Pressure in Pascal
- Oil: density 850 kg/m³ viscosity 0.17 m²/s
- Same pleat count
- Different in- and outflow channel widths
- Grid resolution 40 μm
- 50 x 70 x 380 cells

Narrow Channel:

4 bar

Thick Wire:

3.1 bar

Thin Wire:

2.7 bar

Conclusions and remarks

- Same experiments same results as Chen, Pui & Lui, 1995: validation successful
- Different inlet length
- Periodic boundary conditions
- Stokes-Brinkmann equations
- Complete 2d air filtration study (6x4x14 runs) takes 1 day on 8 CPU desktop computer, 4 days on laptop
- No support: media permeability, media surface area and channel width matter
- With support: also channel structure and occluded media surface area matter
- Single 3d oil filtration computation takes 45 min on 8 CPU desktop computer, 4 hours on laptop.
- Evaluate Software at www.geodict.com

Pleat structures, pressure drop computations and figures made with our Software

Thank you for your time and attention

www.geodict.com