On Coupled Particle Level and Filter Element Level Simulation for Filtration Processes

Z. Lakdawala, O. Iliev, S. Rief, A. Wiegmann

Fraunhofer Institute for Industrial Mathematics Dept. Flows and Materials Simulation

14.10.2009

Motivation

Motivation

00

Multiple scales in filtration

Independent models at different scales

Macroscale model

Microscale model

Micro-macro coupling

Sketch of the algorithm

Some preliminary results

Results

Summary

Multiple scales in filtration

Motivation

•0

Multiple scales in filtration

00

Determining performance of a filter

- Pressure drop flow rate ratio
- ▶ Dirt Storage capacity
- Size of penetrating particles

Depend on microscale (e.g. fibrous geometry) and macroscale (e.g. pressure, velocity) quantities.

•00

00

Navier-Stokes-Brinkmann System

Incompressible laminar flow through filters

Independent models at different scales

$$\underbrace{\frac{\partial \vec{u}}{\partial t} - \nabla \cdot (\tilde{\mu} \nabla \vec{u}) + (\rho \vec{u}, \nabla) \vec{u}}_{\text{Navier-Stokes}} + \underbrace{\mu \tilde{K}^{-1} \vec{u} + \nabla p = f}_{\text{Darcy}}$$

$$\nabla \cdot \vec{u} = 0$$
 continuity equation

Fictitous Region Method

Type continuation of coefficients:

$$\tilde{K}^{-1} = \begin{cases} K^{-1}, & x \in \Omega_{p} \\ 0, & x \in \Omega_{f} \end{cases}$$

Interface conditions

$$[\vec{u}]_{\Gamma} = 0$$

 $[\vec{n} \cdot (\tilde{\mu} \nabla \vec{u} - pI]_{\Gamma} = 0$

Fraunhofer

Justification in Angot 1998

Z.Lakdawala

ITWM, Dept. SMS

Macroscale model

0.0

00

- ► Estimate the pressure drop within the filter element
- Varying permeability (depending on loading)

Independent models at different scales

Missing: Information about the processes at the pore/particle level

Extension of macroscale model to account for particles' loading

► Solve the convection-diffusion-reaction equation at the meso scale.

Macroscale model

Motivation

00

Convection Diffusion Reaction equation

$$\frac{\partial C^{J}}{\partial t} + (\vec{u}, \nabla C^{J}) - D\Delta C^{J} = \frac{\partial M}{\partial t}$$
$$\frac{\partial M}{\partial t} = -\alpha^{J} C^{J}$$

J - particle size

t - time

u - velocity

C - concentration

D - diffusion coefficient

 $\alpha(t, u, C)$ - Absorption Rate

α derived from measurements or directly from microscale simulations

t	β	
1	51.9	
3	39.0	
5	33.2	
7	25.3	
9	10.9	

Microscale model

Motivation

00

Stokes system

$$\mu \Delta \vec{u} + \vec{f} = \nabla p \\
\nabla \cdot \vec{u} = 0$$

t - time

 \vec{u} - fluid velocity

p - pressure

 μ - fluid viscosity

Stochastic ODE

$$\frac{\partial \vec{u_0}}{\partial t} = -\gamma \times (\vec{u_0}(\vec{x}) - \vec{u}(\vec{x})) + \frac{Q\vec{E}(\vec{x})}{m} + \sigma \times \frac{d\vec{W}(t)}{dt}$$

$$\frac{\partial \vec{x}}{\partial t} = \vec{u_0}$$

$$\sigma^2 = \frac{2k_BT\gamma}{m}$$

$$\gamma = 6\pi\rho\mu\frac{R}{m}$$

$$\langle d\vec{W}_i(t), d\vec{W}_i(t) \rangle = \delta_{ij}dt$$

$$m - \text{particle}$$

$$E - \text{electric}$$

$$d\vec{W}(t) - 3t$$

$$measure$$

$$\rho - \text{fluid def}$$

 \vec{x} - particle position

 $\vec{u_0}$ - particle velocity

m - particle mass

Q - particle charge

E - electric field

 $d\vec{W}(t)$ - 3D probability

 ρ - fluid density

R - particle radius

Microscale model

Macroscopic scale

000

0

Used for simulating filtration processes at filter element level

Independent models at different scales

- ▶ Needs measurements at element level to calculate deposition rate and change in permeability
- Does not provide info about particles at pore/particle level

Microscopic scale

- Limited computer power
- Good for local simulations
- Unable to solve at level of filter element due to computer power limitations.

Sketch of the algorithm

Step 1

000

00

 Δp , \vec{u} and C^J computed on the macro scale

Independent models at different scales

Step 2

Downscaling of local velocity and particle concentrations on selected voxels

Sketch of the algorithm

Motivation

00

Step 3

Solve micro problem locally and compute new values for K and α

Step 4

Use interpolation techniques to compute α and K everywhere

Sketch of the algorithm

000

00

Details to be noted

- different range of velocities
- change of particle concentration over time

Independent models at different scales

Incorporate info in the form of correlation tables

Z.Lakdawala

00

Motivation

000

00

Correlation tables from micro simulations

Independent models at different scales

- different particle sizes
- different velocities
- different filter media
- different concentrations

Simplified to be a pre processing step for macro simulations

00

Motivation

00

Results

Correlation tables from measurements

Independent models at different scales

Z.Lakdawala

Results

00

Motivation

Macro simulation performed on filter element level

$$\alpha^{J}(y,z) = \frac{(h + \Delta t u(y,z))(n^{J}(t) - n^{J}(t + \Delta t))}{h\Delta t n^{J}(t)}$$

00

Motivation

000

00

Results

Efficiency profile for different particle sizes

Independent models at different scales

Motivation

00

- Filtration processes vary at different scales
 - Macroscale: Navier Stokes Brinkmann system
 - Mesoscale: Particle Concentration Equation
 - Microscale: Stokes and particle deposition model
- Micro-meso-macro coupling
 - Filter element level simulation
 - Downscaling of local velocities and particle concentrations
 - Correlation tables from microscale simulations/measurements
 - Deriving α from correlation tables

THANK YOU FOR YOUR ATTENTION!

