Werkstoffmodellierung und –eigenschaftsberechnung auf Basis von CT-Aufnahmen

Fachtagung Computertomografie, 27.09.2010

Erik Glatt, Jürgen Becker, Stefan Rief und Andreas Wiegmann

Fraunhofer Institut Techno und Wirtschaftsmathematik,

Kaiserslautern

Computation of permeability

Darcy-Law: $\overline{\mathbf{u}} = \frac{1}{L} \mathbf{K} \cdot \Delta \mathbf{p}$ Generalized: $\vec{\mathbf{u}} = -\kappa \cdot \nabla \mathbf{p}$

Permeability tensor:
$$\mathbf{K} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{32} & k_{32} & k_{33} \end{pmatrix}$$
 Find anisotropic material behavior

Knitted Wire Meshes: Geometry-Based Property Analyses

- (b): Largest through pore.
- (c): Bubble point pressure in dependency of the contact angle.
- (d): Pore size distribution.

Use PSD for solids to get fiber diameters

Knitted Wire Meshes: Partial-Differential-Equation-Based Property Analysis

- (a): Magnitude of velocity in a CT-scan of a knitted wire mesh.
- (b): Mean velocity as function of pressure drop for three knitted wire meshes.

Woven Metal Wire Meshes: Geometric Validation

(a): CT of a twill Dutch-weave. (b): Geometry model.

(c)-(d): Geometric validation. Microse

Microscopy Courtesy M. Knefel, Gebr. Kufferath AG.

Woven Metal Wire Meshes: Geometric Validation

Woven Metal Wire Meshes: Measurement and Simulation

Velocity dependent pressure drop: Comparison between measurements and simulations on corresponding geometry models.

Model: Curved Fibers with inder

Process:

- fibers consist of straight segments
- start with one segment, then add segments
- direction of added segment:
 - direction of prev. segment + random disturbance
 - direction of first segment + random disturbance
 - keep current curvature + random disturbance
- add binder

Relative Permeability

Two-step approach:

Relative Permeability

Two-step approach:

- 1. Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \geq \frac{2\sigma}{r}\cos\beta$

Relative Permeability

Two-step approach:

- 1. Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \geq \frac{2\sigma}{r}\cos\beta$
- 2. Solve Stokes equation on the remaining pore space to determine wetting phase (=air) permebility

Simulated mercury Distribution at Bubble Point in tomography

pc= 10.6 kPa (r= $10.5 \mu \text{m}$)

uncompressed

uncompressed

Geometric Algorithm: (Schulz, Becker, Wiegmann, Mukherjee, Wang, J. Electrochem Soc. 154, 2007)

- compression in z-direction
- handles each z-column separately
- mass is kept by shifting solid blocks
- No knowledge about applied forces

compressed (20%, red. model) computation time: 0.25 s

uncompressed

compressed (20%, FE model) computation time: 5 days

uncompressed

compressed (20%, comparison)

Compression Effect on Permeability

• calculated for 0%, 10%, 20%, 30% compression

Compression Effect on Relative Permeability

Tomography and Models of felts

Papiermaschine

Tomographie

Forming fabric and dewatering felt

Binarized SEM (top) and virtual sintered ceramics (bottom)

Computed vs measured porosities and permeabilities

Geometry and property predictor

Thank You!

www.geodict.com

