Numerical Determination of Effective Material Properties of Porous Media

MMM, Freiburg, 08.10.2010

- Jürgen Becker, AndreasWiegmann
- Fraunhofer Institute for Industrial Mathematics ITWM
- Kaiserslautern, Germany

Application Example: Porous Layers inside PEM Fuel Cell

Application Example: Porous Layers inside PEM Fuel Cell

Gas Diffusion layer

Application Example: Porous Layers inside PEM Fuel Cell

Gas Diffusion layer

Aim: engineer a better GDL!

Better?

- higher electronic conductivity
- higher diffusivity
- higher stability
- ??

Properties are dependent on

- material type
- pore structure

1. General Approach

- 2. Applications
 - PEM Fuel Cell Gas Diffusion Layer
 - Others

Lab

Porous Material

Properties are:

- pore size distribution
- permeability
- diffusivity
- capillary pressure curve
- ...

Properties are:

- pore size distribution
- permeability
- diffusivity
- capillary pressure curve
- ..

Properties are:

- pore size distribution
- permeability
- diffusivity
- capillary pressure curve

• ..

Properties are:

- pore size distribution
- permeability
- diffusivity
- capillary pressure curve

• ..

Property Computations
... and image acquisition
... and image processing
... and measurements

Material Models

Model

Material Models

Material Models

Material Models

The GeoDict Software

Model: Nonwovens - Straight Fibres

Poisson line process using:

- fibre diameter
- fibre cross sectional shape
- anisotropy
- porosity

Model: Nonwovens - Straight Fibres

Poisson line process using: ■ fibre diameter fibre cross sectional shape anisotropy porosity Production process is not modelled!

Model: Nonwovens - Some Variants

Property: Permeability

Macroscopic description (homogenized porous media model)

Darcy's law :
$$u = -\frac{1}{\mu} \kappa \nabla p$$

u : average flow velocity

κ: permeability tensor *unknown*

 μ : viscosity p : pressure

Microscopic description (pore structure model)

Stokes equation:
$$-\mu\Delta u + \nabla p = 0$$

Boundary conditions: no-slip on fibre surface, pressure drop κ can be determined from the solution!

Property: Relative Permeability

Two-step approach:

Property: Relative Permeability

Two-step approach:

- Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \geq \frac{2\sigma}{r} \cos\beta$

Property: Relative Permeability

Two-step approach:

- Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \geq \frac{2\sigma}{r} \cos \beta$
- 2. Solve Stokes equation on the remaining pore space to determine wetting phase (=air) permebility

Property: Diffusivity

Macroscopic description (homogenized porous media model)

Fick's first law: $j = -D^* \nabla c$

D*: effective diffusivity [m²/s] *unknown*

j: diffusion flux [mol/m²/s]c: concentration [mol/m³]

Property: Diffusivity

Macroscopic description (homogenized porous media model)

Fick's first law: $j = -D^* \nabla c$

D*: effective diffusivity [m²/s] unknown

j: diffusion flux [mol/m²/s] c: concentration [mol/m³]

Microscopic description (pore structure model)

Laplace equation: $-\Delta c = 0$

Boundary conditions: no-flux on fibre surface, concentration drop

D* can be determined from the solution!

Summary Part I

Models:

- CT Images
- Fibrous
- Woven
- Spheres
- Sintered
- Patterns
- Layered structures

Properties:

- Pore size distribution
- Surface area
- Largest Through Pore
- (Knudsen) Diffusivity
- Permeability
- Electric conductivity
- Thermal conductivity
- Stiffness
- Capillary pressure curve
- Bubble point
- Relative (= saturation dependent) permeability
- Relative (= saturation dependent) diffusivity
- Filter efficiency and life time

Application: Gas Diffusion Layer of PEM Fuel Cell

Joint work

PSI:

- CT Images of Toray paper at different compression levels
- Diffusivity and permeability measurements at different compression levels ITWM:
- Compute diffusivity and permeability

Becker, Flückiger, Reum, Büchi, Marone, Stampanoni, 2009, J. Electrochem. Soc. 156

Diffusivity

Perfect in tp-direction

Small differences in ipdirection

- ip-measurememts performed on a stack of GDLs
- tomography image shows single layer between sample holder

Permeability

Perfect in tp-direction

Small differences in ipdirection

- ip-measurememts performed on a stack of GDLs
- tomography image shows single layer between sample holder

Other Applications

- Woven metal wire meshes
- Filtration
- Paper dewatering felts
- Permeability of rocks
- Diapers
- Sintered ceramics

Tomography and Models of Felts

Forming fabric and dewatering felt

Woven Metal Wire Meshes: Complex weave models

Left: Model of a two-layer weave based on a CT-scan. Right: Model of a complex one-layer twill Dutch-weave.

Woven Metal Wire Meshes: Geometric Validation

(a): CT of a twill Dutch-weave. (b): Geometry model.

(c)-(d): Geometric validation.

Woven Metal Wire Meshes: Measurement and Simulation

Velocity dependent pressure drop: Comparison between measurements and simulations on corresponding geometry models.

Sintered Ceramics

- top: binarized SEM image
- bottom: cross section through virtually created medium

Computed vs measured porosities and permeabilities

Conclusions

Two validation steps to enable Computer Aided Material Engineering:

- validate property computations
- validate virtual structure models

Many fields of applications

Thank You!

Geometry generator, property predictor and virtual material designer

www.geodict.com

