Predicting Transport Properties of Porous Layers Based on Pore-Scale Models

Transpore, Villigen, 19.08.2010

Jürgen Becker, Andreas Wiegmann
Fraunhofer Institute for Industrial Mathematics ITWM
Kaiserslautern, Germany

PEM Fuel Cell

PEM Fuel Cell

Gas Diffusion layer

PEM Fuel Cell

Gas Diffusion layer

Aim: engineer a better GDL!

Better?

- higher conductivity
- higher diffusivity
- higher stability
- ??

Predicting Transport Properties of Porous Layers Based on Pore-Scale Models

- 1. General Approach
- 2. Application to PEM fuel cells
 - Gas Diffusion Layer
 - Catalyst Layer

Lab

Porous Medium

Properties are:

- pore size distribution
- permeability
- diffusivity
- cap. pressure curve
- ...

Properties are:

- pore size distribution
- permeability
- diffusivity
- cap. pressure curve

• ...

... and Measurements

... and Imaging

The GeoDict Software

Model: Nonwovens - Straight Fibres

Poisson line process using:

- fibre diameter
- fibre cross sectional shape
- anisotropy
- porosity

Model: Nonwovens - Some Variants

Model: Woven Fabric

Property: Permeability

Macroscopic description (homogenized porous media model)

Darcy's law : $u = -\frac{1}{\mu} \kappa \nabla p$

u : average flow velocity

κ: permeability tensor *unknown*

 μ : viscosity p : pressure

Microscopic description (pore structure model)

Stokes equation: $-\mu\Delta u + \nabla p = 0$

Boundary conditions: no-slip on fibre surface, pressure drop κ can be determined from the solution!

Property: Relative Permeability

Two-step approach:

Property: Relative Permeability

Two-step approach:

- Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \geq \frac{2\sigma}{r} \cos\beta$

Property: Relative Permeability

Two-step approach:

- 1. Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
 - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \ge \frac{2\sigma}{r} \cos \beta$
- 2. Solve Stokes equation on the remaining pore space to determine wetting phase (=air) permebility

Property: Diffusivity

Macroscopic description (homogenized porous media model)

Fick's first law: $j = -D^* \nabla c$

D*: effective diffusivity [m²/s] *unknown*

j: diffusion flux [mol/m²/s]c: concentration [mol/m³]

Property: Diffusivity

Macroscopic description (homogenized porous media model)

Fick's first law: $j = -D^* \nabla c$

D*: effective diffusivity [m²/s] unknown

j: diffusion flux [mol/m²/s] c: concentration [mol/m³]

Microscopic description (pore structure model)

Laplace equation: $-\Delta c = 0$

Boundary conditions: no-flux on fibre surface, concentration drop

D* can be determined from the solution!

Summary Part I

Models:

- CT Images
- Fibrous nonwovens
- Woven structures
- Sintered structures
- Sphere packings
- Layered structures

Properties:

- Pore size distribution
- Surface area
- (Knudsen) Diffusivity
- Permeability
- Electric conductivity
- Heat conductivity
- Capillary pressure curve
- Bubble point
- Relative (= saturation dependent) permeability
- Relative (= saturation dependent) diffusivity
- Filter efficiency and life time

Application: Gas Diffusion Layer of PEM Fuel Cell

Joint work

PSI:

- CT Images of Toray paper at different compression levels
- Diffusivity and permeability measurements at different compression levels ITWM:
- Compute diffusivity and permeability

Becker, Flückiger, Reum, Büchi, Marone, Stampanoni, 2009, J. Electrochem. Soc. 156

Diffusivity

Perfect in tp-direction

Small differences in ipdirection

- ip-measurememts performed on a stack of GDLs
- tomography image shows single layer between sample holder

Permeability

Perfect in tp-direction

Small differences in ipdirection

- ip-measurememts performed on a stack of GDLs
- tomography image shows single layer between sample holder

Application: Catalyst Layer of PEM Fuel Cell

Problem: pore sizes < 100 nm

Catalyst Layer Model

Carbon agglomerates plus electrolyte

Conductivity

Compare models with varying carbon and electrolyte volume fractions

Vol% Carbon	Vol% Electrolyte	Porosity	Electronic Conductivity	Protonic Conductivity
35.4	12.2	52.4	6.6 %	1.1 %
40.9	5.2	53.9	9.7 %	none
40.9	13.8	45.3	9.7 %	1.6 %
40.9	20.7	38.3	9.7 %	4.9 %
40.9	26.3	32.8	9.7 %	8.2 %
45.1	15.2	39.8	13.4 %	1.9 %
50.1	16.6	33.3	17.6 %	2.2 %

Summary Part II

Gas diffusion layer:

validated method to determine diffusivity and permeability

Catalyst layer:

no validation possible until 3D images are available

Thank You!

Geometry generator, property predictor and virtual material designer

www.geodict.com

BMBF project PemCaD

