Nanoparticle migration in a natural granite fracture

E. Glatt, A. Wiegmann

Fraunhofer ITWM, Kaiserslautern, Germany

(Email: glatt@itwm.fhg.de)

F. Huber, T. Schaefer KIT, Institute for Nuclear Waste Disposal (INE), Karlsruhe

F. Enzmann

University of Mainz, Institute for Geosciences, Mainz

Compute Material Properties with GeoDict

The Tomogram

CT of a granite fracture:

- resolution of 80 μm
- segmented: pores, porous material, solid
- size 631x631x1691voxel

(by F. Enzmann et al at the University of Mainz, Institute for Geosciences)

The Flow Simulation

incompressible stationary Navier–Stokes equation:

$$-\mu \Delta u + \nabla p + \rho u \Delta u = 0$$
$$-\mu \Delta u + \nabla p = 0$$

- finite volume solver (EFV in GeoDict
- method is optimized for large voxel grids
- porous material is viewed as solid

the computational costs for 631 x 631 x 1800 voxels: 8 processes on a 12-core desktop machine, 72 GB RAM, 4 h simulation time

flow simulation was performed for water at 20°C, flow rate 66.8 µL/min

The Transport Properties

particle properties:

- diameter 12 nm
- density 4000 kg/m3
- no chemical processes
- diffusion

=> simulation refracts the impact of fracture geometry on mass transport

interaction model:

particle hitting the fracture walls bounce, no energy-loss (sieving model GeoDict)

transport simulations

breakthrough curves

Column Migration Experiment

the nanoparticle (quantum dots) transport is experimentally realized by means of column migration experiments at the KIT, Institute for Nuclear Waste Disposal

Break-Through Curves

simulation:

varying starting times, particle numbers

red: 100,000 particles, fixed time

green: 1,000,000 particles, Gaussian distributed start times, standart deviation 100 sec

blue: 100,000 particles, standart deviation 300 sec

experiment: 66.8 µL/min, exact times and positions of particles entering the fracture unknown

=> changing start times the simulation matches the experimental result very well

Conclusions

3D tomogram of a granite fracture:

- compute flow / transport properties (GeoDict software)
- simulation agree very well with corresponding experimental results

variations of the workflow:

- different particle properties and start position
- different model for the interaction between rock and particle
- solve Stokes equation (less memory / run time) or the Stokes-Brinkmann equation (porous regions)
- calculate e.g. pore size distributions, elastic properties, saturation-dependent relative permeability, diffusion properties and conductivity

Thank You!

Geometry generator, property predictor and virtual material designer

www.geodict.com

