Prediction of Filter Efficiency and Filter Life Time in Different Regimes

Jürgen Becker

GeoDict User Meeting 2012

Filter Efficiency

Basic idea:

- 1. Filter model
- 2. Determine flow field
- 3. Track particles (filtered or not?)

Randomness:

- Starting positions
- Brownian motion

Result:

Percentage of filtered particles

Tracking the Particles

- No interaction between particles
- Flow field is not changed by a moving particle
- Modeled effects:
 - Inertia
 - Brownian motion
 - Electrostatic attraction or repulsion

Adhesion Model

What happens when a particle hits the filter material?

- a) sticks to material (deposited)
- b) bounces off

Particles always stick => *Caught on first touch* model
Particles always bounce off => *Sieving* model

Particles loose energy when bouncing => **Restitution** factor

Hamaker Model

Adhesive forces:
$$F_{vdW} = \frac{Hd}{12a^2}$$

(van-der-Waals forces between spherical particle and flat surface)

H Hamaker constant [J]d Particle diametera Distance between particle and surface

Escape velocity:

- 1. Integrate from a0 (min distance = 4e-10) to infinity
- 2. Compare with kin. energy of particle

$$v^2 = \frac{H}{4\pi\rho a_0 r^2}$$
 Particle sticks for smaller velocities v.

Comparison

Caught on first touch

Hamaker H =1e-21 Restitution = 0.5 Sieving

Example

- 200³ voxels + 30 inflow, 20 outflow
- Voxel length 0.95 μm
- 90 % porosity
- Fiber diameter 6 μm

Flow field:

- Water at 20° C
- v = 0.008 m/s
- Restitution = 0.5

Efficiency

Comments

- Results are dependent on fluid velocity and viscosity.
- Parameters need to be fitted to experiments (by the user!).
 - Need: tomogram of the clean filter
 - Need: efficiency measurement for this filter
- FilterDict UDF allows full access to adhesion model.

Filter Life Time Simulations

Basic idea:

- 1. Filter model
- 2. Determine flow field
- 3. Track particles
- 4. Deposit particles (change structure)
- 5. Determine flow field (consider deposited dust)
- 6. Track particles (consider deposited dust)

time step: batch

Solid/Empty Model

- Particle diameter > voxel length
- Flow modeled with Stokes equation

Partially Filled Voxels

- Particle diameter < voxel length
- Flow modeled with Stokes-Brinkman equation (porous voxels: local flow resistivities)

Local Flow Resistivity

Particle Deposition: fill a (volume) fraction of a voxel 0<f<1

Volume Fraction	Particle Collision	Flow Resistivity
$0 < f \le f_{min}$	empty	0 (empty)
$f_{min} < f < f_{max}$	empty	$\frac{f-f_{min}}{f_{max}-f_{min}}\sigma_{max}$ (linear)
$f_{max} \le f$	solid	σ_{max}
f = 1	solid	∞ (solid)

Choice of Parameters

 f_{min} : should be slightly > 0, no big influence on results

 f_{max} : solid volume fraction inside of dust agglomerations (or the filter cake)

 σ_{max} : flow resistivity of dust agglomerations (or the filter cake)

How can f_{max} and σ_{max} be found ?

- Fit to measurements
- II. Numerical simulations on a sub-scale (i.e. particle diameter > voxel length)

II. Numerical Simulations on a Sub-Scale

1. Model deposition (here: SAE Fine Dust)

2. Take a piece of cake

3. Porosity: 73.5 % => f_{max} = 0.265

4. Use FlowDict-EJ Stokes:

Flow resistivity: σ_{max} = 6.8 e+7

Example: Fit to Measurements

Ceramic **D**iesel **P**articulate **F**ilter media (Fraunhofer IKTS)

Obervation:

- 1. fast initial pressure drop increase (depth filtration)
- 2. long slower pressure drop increase (cake filtration)

Cake Depth Model

f¹_{max}: max soot concentration per *depth* voxel determines x

 σ^{1}_{max} : max flow resistivity for (full) *depth* voxel determines s1

f²_{max}: max soot concentration per *cake* voxel determines cake height

 σ^2_{max} : max flow resistivity for (full) *cake* voxel determines s2

Simulations with Fitted Parameters

Predicting power of the model

Measurement vs. Simulation: pressure drop scaled by flow rates with soot (For Prediction)

Experimental and simulated pressure drop for a different ceramic, NTF_B, with parameters found by fitting against the measurements of NTF_S.

The difference between S and B lies in grain sizes and consequently pore sizes.

Summary

Fine-tuning of adhesion and clogging models:

- Efficiency
 - Hamaker constant and restitution
 - FilterDict UDF allows to implement own model
- Life Time
 - Porosity of deposited soot/dust
 - Flow resistivity in a partially filled voxel

- Redesign of FilterDict dialogs
- Split efficiency and single pass
- Improvements in models and algorithms

Thank you!

Some Slides for FilterDict Experts...

FilterDict Refactoring Summary (GeoDict 2012R1 Version)

- Renamed FilterSolver to Tracker
- 2. Flow solver called from GeoDict, not from FilterSolver
 - allows parallel execution of flow solver and Tracker in Windows
- 3. Tracker parallelization improved
 - Geometry, flow field and e-field data stored distributed (now: each proc only stores a slice, prev.: full data field on each proc)
 - Flow field stored as float (instead of double), geometry as 4-bit
- 4. Only small changes in GUI

1. Hamaker formula corrected

- Prev.: $v^2 = \frac{H}{8\pi\rho a_0 r^2}$
- Now: $v^2 = \frac{H}{4}$

$$v$$
 = escape velocity

$$H$$
 = Hamaker constant

$$\rho$$
 = particle density

$$a_0 = 4e-10$$

$$_r$$
 = particle radius

- 2. Exact calculation of particle-wall collision points and times.
 - Prev.: test for particle-wall overlap at the end of an ODE time step
 - Now: find place, time and collision normal when particle touches wall
 - changes FilterDict UDF

- 3. Adjustment of "Sieving" criterion
 - Prev.: last 5 collisions close together (particle center did not move much) and particle touches several not directly neighbored voxels.
 - Now: last 5 collisions close together (particle center did not move much) and with different, not directly neighbored voxels.
- 4. Flow solver files contain physical units (no dimensionless values)
 - removed LB-Solver (ParPac)
 - *.vap instead of *.mom files (Advantage: *.vap has ASCII header, which allows for additional information, e.g. double or float, voxel corner or center)
 - allows to use Navier-Stokes in FilterDict

- 5. Enhanced interpolation of velocities
 - Prev.: *.mom file contains values at voxel center (averaged for EJ, EFV)
 - Now: *.vap file contains staggered grid data as used in EJ, EFV
- 6. "Time per Batch" instead of "Particles per Batch" also in SinglePass
 - Tracker respects batch time interval (prev.: max. # time steps in ODE)
 - Particle is transfered to next batch, if it is still "in flow" at the end of the time interval
 - Changes in visualization and result files
 - Possible feature: particles starting at different times (currently only in AddiDict)

- 7. Added FilterDict-Efficiency as new command with new GUI
 - Prev.: use single pass with one batch and many particles for efficiency simulations
 - Now: can get better statistics for non-uniform distributions (e.g. SAE fine dust)
 - Less parameters

8. Miscellaneous

- Cunningham correction choosable in GUI
- Additional model available for clogging and flow resistivity (Cake|Depth)
- 2012R1 macros still run (compatibility mode) if no LB solver was used.

Question: Single Pass GUI

How should the SinglePass GUI look like?

What are the input values?

