Determination of Two-Phase Flow Properties with SatuDict

Jürgen Becker

Case Study

Input:

■ Tomogram of Palatine Sandstone (Pfälzer Buntsandstein)

Aim: Determine (saturation dependent) permeability

Steps:

- Segmentation (ImportGeo)
- Pore size distribution (PoroDict)
- Capillary pressure curve (SatuDict)
- Permeability, fully saturated (FlowDict)
- Relative permeability, partially saturated (SatuDict)

Tomogram

- F. Enzmann, Inst. for Geosciences, Uni Mainz
- Pfälzer Buntsandstein
- resolution 0.7 µm
- 1024³ voxels

Segmentation

- Porosity 25.7 %
- Downscaled to 512³ voxels

Pore Size Distribution

Pore space : X

Opening of radius r:

$$O_r(X) = \bigcup_{B_{r,x} \subset X} B_{r,x}$$

Volume of pores with radius $r_1 \le r \le r_2$:

$$O_{r_1}(X) - O_{r_2}(X)$$

(PoroDict - Geometric Pore Size Distribution)

dark grey: $r \ge 20$

light grey: $16 \le r < 20$

Pore Size Distribution (Sandstone)

Capillary Pressure / Pore Morphology Method

■ Young – Laplace equation

$$p_c = \frac{2\sigma}{r} \cos \beta$$

(pore radius <-> cap. pressure)

- => Pore size distribution gives saturation at given cap. pressure
- But: connectivity of pores ?

- adds connectivity checks to Young-Laplace
- low numerical cost

Drainage I

- Hilpert / Miller 2001
- SatuDict 2010R2
- Guarantees connectivity of NWP to reservoir
- Idea: move in spheres
 - Start: completely wet
 - Start: large radius (i.e. small p_c)
 - Steps: smaller radius (higher p_c)

■ No residual water

Wetting phase (water) reservoir

Drainage II

- Ahrenholz et al. 2008
- Additionally: WP must be connected to reservoir
- Residual water (orange)

Non-wetting phase (air) reservoir

Wetting phase (water) reservoir

Drainage (Sandstone Sample)

Drained pores ($r = 14 \mu m$)

Drained pores ($r = 8.4 \mu m$)

Drainage - Sandstone Sample

■ Slice of the 3D result

■ Residual water: 8.6 %

■ black: air

red: residual water

white: matrix material

Capillary Pressure Curve (Drainage, Sandstone)

Drainage II

contact angle 0°

Imbibition I

- Hilpert / Miller 2001
- SatuDict 2010R2
- No connectivity checks
- No residual air
 - Start: completely dry
 - Start: small radius (i.e. large p_c)
 - Steps: larger radius (smaller p_c)

Distribution by pore radius (Young-Laplace)

Imbibition II

- Ahrenholz et al. 2008
- WP must be connected to reservoir
- No residual air

Non-wetting phase (air) reservoir

Wetting phase (water) reservoir

Imbibition III

- Ahrenholz et al. 2008
- WP must be connected to reservoir
- NWP must be connected to NWP reservoir
- Residual air (orange)

Non-wetting phase (air) reservoir

Wetting phase (water) reservoir

Drainage & Imbibition (Sandstone)

Permeability

Macroscopic description (homogenized porous media model)

Darcy's law :
$$u = -\frac{1}{\mu} \kappa \nabla p$$

u : average flow velocity

κ : permeability tensor *unknown*

μ: viscosity p:pressure

Microscopic description (pore structure model)

Stokes equation: $-\mu\Delta u + \nabla p = 0$

Boundary conditions: no-slip on surface, pressure drop κ can be determined from the solution!

Permeability (Sandstone)

FlowDict Result (EJ-Stokes): 0.966 e-12 m²

Relative Permeability

Idea:

- Combine
 - phase distributions from pore morphology
 - single-phase flow
- Advantage:
 - low computational costs
 - stability

Relative Permeability (Sandstone)

- Choose saturation level, choose wetting model
- Use PM to find air distribution (here: yellow)
- Solve Stokes equation in remaining pore space

Relative Permeability (Sandstone)

Summary: Case Study

Input:

■ Tomogram of Palatine Sandstone (Pfälzer Buntsandstein)

Calculated properties:

- Pore size distribution
- Capillary pressure curve
- Permeability
- Relative permeability

Comments

- Same ideas can be used for diffusivity or conductivity
- Applications:
 - Gas diffusion layer of fuel cells
 - Hygiene products
 - Paper dewatering felts

Thank you!

