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of the flow, for example turbulence. Within the filter media, the challenges arise that 
the precise geometry of the domain is usually not known and  that boundary 
conditions on the very complex boundaries of the flow domain must be imposed. 
When particles are considered in this system, one finds that they interact with the 
fluid and with each other while in flight, and then also with the filter media and 
previously deposited particles via collisions. The shapes of the particles are not 
known and the adhesion or stickiness between particles and between particles and 
filter media are also not known. Additional forces such as electric charges may have 
to be considered, yet neither the charges on the particles nor those on the filter 
media are known. When the force exerted by the flow becomes too large, or the 
direction of the flow is reversed (pulse cleaning), particles that were previously 
deposited may come loose again and break off in larger chunks. And all of these 
effects happen on scales from about 50 nanometers to several meters, from the 
smallest particles to the length of the exhaust system of a vehicle. So, from a 
simulation view point, particle filtration simulation poses three different types of 
difficulties: 
 

1. The process is not completely understood. 
2. The process is understood, but its parameters are not known. 
3. The process and its parameters are known, but proper modeling would 

overwhelm the computational resources. 
 

Effect

Scale 

Geometric 

Structures 

Filtration 

Physics 

Software 

Considerations 

Nanometer 

Nano fibers 

Soot-cake formation 

Membranes 

Slip flow 

Cunningham 

Adhesion 

Restitution 

Millions of particles 

Very large domains 

Parallel computing 

Local coarsening 

Micrometer 

Nonwoven 

Packed beds 

Woven 

Sintered 

Foams 

Filter cake 

Nonwoven 

Interception 

Impaction 

Diffusion 

Electric charges 

Resolved Clogging

Randomness 

Navier-Stokes-Brinkman 

Effective soot cake 

Collision detection 

Bounce handling 

Millimeter 

Pleat shape 

Honeycomb shape 

Support structures 

CAD 

Deformation 

Effective clogging

Porous media 

Track particles / concentrations

Incorporate measured data 

Filter efficiency & life time 

 
Table 1: Topics touched in this overview. 



Progress is made continuously with respect to all three of the above. A basic 
ingredient for this progress is the availability of new hardware. Micro Computer 
Tomography (µCT) gives unprecedented insights into the three-dimensional structure 
of filter media. With these data, it is possible to create sophisticated computer models 
of the filter media that ultimately allow the design of the filter media for specific 
applications, for example complex ceramic models [15, 19]. Scanning Electron 
Microscopic (SEM) images provide detailed two-dimensional information about the 
media and deposited particles with a resolution far better than that of µCT.  Atomic 
force microscopy (AFM) determines the adhesion forces between different materials. 
Such data is essential in the regime where some but not all colliding particles get 
collected. And last but not least, the progress in computer hardware, where PC can 
be spelled these days as Personal Cluster, has made possible detailed three-
dimensional computations that were unconceivable only 7 years ago. The latest 
generation desktop machines come in at 12,500 EUR for 64 cores and 512 GB of 
memory. 
 
Besides the progress in hardware, also new models and new algorithms contribute to 
the progress in filtration simulation. The most notable improvements in the models 
are the influence of electric fields in air filtration, stochastic geometry models for 
random filter media, incorporation of slip flow, treatment of particle collisions and 
bounce, subscale models of filter cake as porous media and the introduction of the 
Stokes-Brinkman equations for handling regimes of free and porous media flow that 
are so dominant in filtration applications. On the simulation side, the parallelization of 
the flow solvers and the codes tracking ordinary differential equations [16], task 
automation, handling and result extraction from massive result data sets and vastly 
improved pre- and post-processing capabilities are available today. 
 
Table 1 gives an overview over the scales and effects that are considered. The topics 
are grouped according to the three scales nanometer, micrometer and millimeter, and 
according to whether they are a geometric, filtration or simulation issue. 
 
2. Filter and filter media simulation 
 
Direct numerical simulation is based on realistic three dimensional geometric models 
of the filter and the filter media [8]. To validate the simulation, existing objects must 
be imported into the computer. CAD data sets are commonly available for the filter, 
while for the filter media, usually microscopy, SEM or µCT images may be available. 
The domain of interest is partitioned into small cells, the computational grid, to 
perform the simulations. The fundamental approach in the present work is to use  
special 3D-images, segmented tomograms or STs, also as the computational grid: 
it is always a three-dimensional rectangular array of typically between 1 million and 
100 million cubic cells. The simplification of an ST compared to a 3D-image is the 
number of colors. STs often contain only 2 colors, usually less than 10. Colors in STs 
identify materials and their properties, e.g. pores, polyester, ceramics, warp or weft 
wires, etc. All representations, µCT, CAD or analytic data, get converted into STs. 
 
Structure generators create STs of filter media based on analytic or statistical 
descriptions. Even designs that do not exist in reality can be considered and 
compared. The next paragraphs describe the principles behind several generators. 
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By combining the equations for the unconstrained flow and flow in porous media, 
computations of filtration properties of cartridge filters (c.f. §2.5) and filter cakes (c.f. 
§2.6) become possible. 
 
For the varying requirements of these sets of equations, a number of different solvers 
are in use. The ParPac Lattice-Boltzmann code [4] for all three sets of equations is 
very well parallelized and works on very large problems in resolved filter media on 
distributed memory machines. A finite volume code SuFiS (see [7] and [2]) also for all 
three sets of equations is designed for computations of complete filters, including the 
housing. Another class of finite volume codes, FFF-Stokes [21] solves only Stokes 
flow. However, it has the lowest memory requirements and fastest solution times for 
highly porous media. 
 
There are several challenges for the computation of flow fields for resolved filtration 
simulations. The first is the need for an accurate geometric representation of the filter 
media and its translation into a computational grid. This challenge is met for a variety 
of STs as seen in §2. The ST is simply identical with the grid, different from other 
approaches followed for example by Fluent®, CFX® and Star-CD®. Because the 
computational domains become very large, highly efficient codes in terms of memory 
and run-time are necessary. The regular behavior of the ST helps saving memory for 
coordinates, sophisticated new algorithms are used and the power of modern 
computers is utilized by parallel implementations. While the current state of the art for 
about 1,000 x 1,000 x 1,000 cell STs is sufficient for the prediction of the pressure 
drop and deposition of large particles, nano particles and nano fibers require even 
better resolved obstacle surfaces [27]. Hence, work on local grid coarsening is in 
progress to allow computations on 10,000 x 10,000 x 10,000 cell STs within the next 
couple of years. 
 

3.2 Electric charges. In the current simplest model for fibrous filters [16], a 
prescribed charge is distributed equally on the fiber surfaces. A constant amount of 
charge ρ is assigned on each surface cell wall. A boundary value problem, the 
Poisson equation, is solved for the electric field : 
 
                                                                                                                                    (7) 
                                                                                                                                    (8) 
 
The potential u  is periodic in the x- and y-directions, and satisfies zero Dirichlet 
boundary conditions at a distance  outside the filter media. By construction, these 
boundaries lie away from the fibers and there is no conflict between singular forces 
on fiber surfaces and the Dirichlet conditions. Due to the periodic boundary 
conditions, the potential feels a non-integrable amount of charges and tends to 
infinity as the Dirichlet boundary moves outwards. That is, the potential u  depends 
on the location of the Dirichlet condition. But its derivative, the electrical field E


 

remains almost independent of the location of the Dirichlet boundary as long as the 
boundary is sufficiently far away from the media.  
 

( ) :  singular force Poisson equation

E = : the electric field

u

u

  






  
 a)    b)   c)   d) 
Figure 12: Deposition on a fibrous media. Particles are started at random positions in 

a plane perpendicular to the flow direction and then transported to their deposition 
locations by (10) and (11), without charges on the fiber surfaces. a) front view, b) rear 

view. With charges on the surfaces c) front view and d) rear view. From [16]. 
 
The largest challenge for the computation of electric fields lies in the need for detailed 
statistics regarding the charge distribution on fiber surfaces. In terms of memory and 
time requirements, equations (7) and (8) are far less demanding than the Navier-
Stokes equations, i.e. the latter dominate the computational effort. A very interesting 
future development will be the modeling and simulation of charge cancellation. This 
means the time dependent reduction of the electric field due to aging of the filter and 
due to charge neutralization when charged particles hit the fiber surfaces. 
 
3.3 Filter efficiency. To simulate the filter efficiency, two effects must be modeled: 
The transport of the particle with the fluid flow, and the collisions and deposition of 
the particle with the filter media. Regarding transport, we assume highly dilute 
concentrations so that particles do not interact with each other while in flight. We also 
assume small and light particles, so that the change of the fluid flow due to the 
particles can be neglected. Particles are spherical so that their motion and collision 
computation is easy and quick. The choice of the particle diameter follows a given 
particle size distribution. To be statistically stable, for filter efficiency simulations it is 
important to use enough particles of each diameter. Relative numbers of particles 
sizes do not matter for filter efficiency computations because the particles do not 
interact in any way. Several thousand particles per diameter are usually sufficient. 
Particles are placed at random positions near the inlet of the flow region and then 
transported according to Newton’s second law. 

(8) 
 

Here F


 is the force on the particle, m its mass and a


 the resulting acceleration. The 
particle moves under the influence of its own inertia, friction with the surrounding fluid 
and diffusion due to Brownian motion. An electric field in the filter media may exert an 
attractive or repulsive influence on the trajectory of the particle. Except for the inertial 
effect which is inherent to equation (9), all effects are viewed as coexisting forces. In 
this way, equation (9) becomes equation (10). Together, (10) and (11) form a system 
of stochastic ordinary differential equations for the motion of a particle. 

(10) 
 
 
(11) 
 

Here t  means time, x


 space and v


 is the velocity of the particle. The first term on the 
right of equation (10) describes the friction between the particle and the surrounding 
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derivation of new analytic descriptions for which the experimental derivation would 
simply have been too costly. Even filter simulations that do not agree with 
experimental data provide invaluable detailed insights into filtration processes that 
help designing better filters and ultimately make our world more livable. 
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