Improved Modeling of Loading Kinetics in Detailed Filter Media Simulations with GeoDict

Jürgen Becker, Andreas Wiegmann Math2Market GmbH, Kaiserslautern, Germany

Friedemann Hahn, Uwe Staudacher, Martin J. Lehmann MANN+HUMMEL GMBH, Ludwigsburg, Germany

Overview

- 1. Motivation peculiar effects observed in experiments
- 2. Hypothetical explanations
- 3. Filtration simulation with GeoDict
- 4. Results

1. Experimental Observations

The Multipass Test (ISO 4548)

The Multipass Test (ISO 4548)

Peculiarities observed in testing of depth filter media

2. Hypothetical Explanations for a Decreasing Efficiency

Explanation A: Re-Entrainment

Explanation B: Lingering

Explanation C: Flow Pathways

3. General Approach to Filtration Simulations

Filter Simulation: Efficiency

Basic idea:

- Filter model
- Determine flow field
- 3. Track particles (filtered or not?)

Randomness:

- Starting positions
- Brownian motion

Result:

Percentage of filtered particles

Tracking the Particles

- No interaction between particles
- Flow field is not changed by a moving particle
- Modeled effects:
 - Inertia
 - Brownian motion
 - Electrostatic attraction or repulsion

Adhesion Model

What happens when a particle hits the filter material?

- a) sticks to material (deposited)
- b) bounces off

Particles always stick => Caught on first touch model

Particles always bounce off => **Sieving** model

Particles loose energy when bouncing => **Restitution** factor

Hamaker Model

Adhesive forces: $F_{vdW} = \frac{Hd}{12a^2}$

(van-der-Waals forces between spherical particle and flat surface)

H Hamaker constant [J]d Particle diametera Distance between particle and surface

Escape velocity:

- Integrate from a0 (min distance = 4e-10) to infinity
- Compare with kin. energy of particle

$$v^2 = \frac{H}{4\pi\rho a_0 r^2}$$
 Particle sticks for smaller velocities v.

Comparison

Caught on first touch

Hamaker H =1e-21 Restitution = 0.5

Sieving

Filter Simulation: Life Time

1. Filter Model

2. Flow Field

3. Track Particles

4. Deposit Particles

5. Flow Field

6. Repeat ...

Improvements to FilterDict

- Global time concept: particles can continue to the next batch
 - => allows lingering particles
 - => needed for re-entrainment
- More accurate particle tracking
 - 2012R1:
 - flow solver uses staggered grid but writes cell-centered result file particle tracking uses cell-centered file
 - => accuracy lost (especially at no-slip boundary)
 - 2012R2:
 - flow solver uses staggered grid and writes staggered grid result file particle tracking uses staggered grid
- •

Effect of Higher Accuracy: MPPS Simulation Example

Structure:

- Fibers with diameter 20 µm
- Different porosities
- Different resolutions (voxel length 1 µm 4µm)

Simulation:

- Find efficiency for all particle diameters (caught on first touch, air filtration)
- Brownian Motion: on/off
- Inertia: on/off (by particle weight)
- Different flow velocities

Fixed: Porosity 90%, Resolution 2 μm

Vary: Velocity

Enhancement of Interpolation in 2012R2

4. Results

Decreasing Efficiency by Changed Pathways

Total Filtration Efficiency by Weight

=> Effect can explain decreasing efficiencies!

Reentrainment & Lingering

Observations from numerous simulations:

- Larger particles get sieved!
- Local flow field does not flip direction => particles stay sieved.
- => Larger particles do not re-entrain (in significant numbers)!
- Initially, particles pass the clean filter quickly.
- Small particles pass through filter cake slowly (in later stages of filtration, assuming sieving model)
- => This is most likely not the main explanation!

Simulation Results (GeoDict 2012R2 Version)

Tomography cut-out

- Oil filtration
- Adhesion model: sieving
- No re-entrainment

Total Efficiency by Weight

Fractional Filtration Efficiency

Summary and Outlook

Summary:

Decreasing efficiencies can be explained by simulation
No re-entrainment, but explained geometrically

Improvements needed:

- More accurate particle tracking / flow field interpolation
- Global time concept: particles can continue in the next batch

Future improvements:

- Enhance fractional efficiency determination (Filtech 2013)
- Reconsider sieving criterion w.r.t. resolution dependency

Thank You!

The Virtual Material Laboratory

www.geodict.com

