

ENERGY AND TRANSPORT SCIENCES LABORATORY

Department of Mechanical Engineering
Texas A&M University

Analysis of Long-range Interactions in Lithium-ion Battery Electrodes

Malcolm Stein IV¹

Andreas Wiegmann² and Partha P. Mukherjee¹

¹Department of Mechanical Engineering, Texas A&M University, College Station, TX ²Math2Market GmbH, Kaiserslautern, Germany

October 29, 2013

Overview

- Background/Motivation
- Objective
- Methodology
- ❖ Results
- Conclusions
- Outlook

Background/Motivation

- Battery composition: anode, cathode, porous separator, and current collectors
- Cathode composition: active material, conductive additives, binder, and an electrolyte.
- Low component electrical conductivity necessitates use of conductive additive
- Improvement in conductivity is dependent on percolation, or pathway formation

Conductive additive pathway formation

3

Adapted from V. S. Battaglia, G. Liu, X. Song and H. Zheng, *J. Electrochem. Soc.*, **159**, A214 (2012).

Background/Motivation

- Additive type and material content have been shown to affect pathway formation and thus electrical conductivity
 - Pathway formation is dependent on particle interaction within electrode
- Active material particle shape can be altered or can vary based on chemistry

$LiFePO_4$ With carbon coating

Adapted from J. Liu, J. Wang, X. Yan, X. Zhang, G. Yang, A.F. Jalbout and R. Wang, Electrochim. Acta, **54**, 5656 (2009).

$LiFePO_{\Lambda}$

Adapted from N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand and J.M. Tarascon, *Chem. Mater.*, **21**, 1096 (2009).

Variation in AM shape could alter the effectiveness of conductive additives

12/13/2013 4

Objective

Objective

 Determine the effect of active material morphology and electrode composition on the effective conductivity of LIBs.

❖ Tasks

- Stochastically generate 3D electrodes (GeoDict)
- Evaluate effective electrical conductivity (GeoDict)
- Characterize results and draw conclusions

12/13/2013 5

Methodology - Particle Modeling

- Finite-volume based modeling approach
- AM particles modeled as pseudo-spherical, pseudocylindrical, and platelet particles
- Graphite modeled as thin, ellipsoidal disks
- Volume set constant, with standard deviations set for equivalent volume change

 Conductivity of additive is much higher than remaining components

AM Particle	Length	Diameter	Volume	Surface Area	
Sphere		9.0 µm	3.82 E-16 m ³	2.55 E-10 m ²	
Cylinder	12.48 µm	6.24 µm	3.82 E-16 m ³	3.06 E-10 m ²	
Platelet	7.25 µm		3.82 E-16 m ³	3.16 E-10 m ²	

Material	Electrical Conductivity
Active Material	.01 S/m
Electrolyte	1 S/m
Graphite	$1.0 \times 10^4 \text{ S/m}$
PVDF	1.0 × 10 ⁻¹³ S/m

12/13/2013 6

Methodology – Model Generation

- Three groups of seven cells were generated in GeoDict using spheres, cylinders, and cubes of equal volume
- ❖ Volume percent of each cell was varied from 20 to 50 percent in constant intervals
- ❖ Later, conductive additive and binder are added also with GeoDict

50%	45%	40%	35%	30%	25%	20%

Methodology - Model Generation

- Ratio of conductive additive to binder kept constant at 0.8:1.0
- Porosity maintained at 35%
- Decrease in AM correspond to increase in additive and binder

Active
Material

Conductive
Additive

Binder

Electrolyte

Methodology - Conductivity

❖Effective conductivity determined via the 3D stationary conduction equation

$$\nabla(\sigma\nabla V) = \dot{J} \ in \ \varphi$$

where V is the potential, σ is the local electrical conductivity, \dot{J} is a source term, and Φ is the domain under consideration.

- Only conduction through the domain is considered so $j \to 0$.
- Potential is the same for two objects on opposite sides of an interface
- ❖ Solution is implemented in simulation package GeoDict™

MATH 2 MARKET

 $\textbf{GeoDict}^{TM} \ \ is \ a \ trademark \ of \ Math 2 Market \ GmbH, \ Kaiserslautern \ Germany.$

Results – Percolation

- Higher degree of percolation occurs with lower volume % AM
- Effective conductivity increases with path number and decreasing overall path tortuosity
- ❖ Percolation, effective conductivity and tortuosity are available in GeoDict™

	Conductive Paths	Conductivity (S/m)	Tortuosity
Sphere			
35%	11	17.4	1.89
30%	39	28.2	1.54
25%	52	55.3	1.38
20%	97	81.8	1.42
Cylinder			
35%	2	8.52	1.54
30%	10	23.1	1.51
25%	59	61.6	1.48
20%	84	70.7	1.42
Platelet			
35%	1	4.95	1.61
30%	11	29.0	1.39
25%	46	46.1	1.51
20%	92	78.6	1.41

Pseudo-Spherical			Pseudo-Cylindrical			Platelet		
35%	30%	25%	35%	30%	25%	35%	30%	25%

Results - Effective Conductivity

- Simulation results for the effective electrical conductivities for each set of electrodes are shown to the right.
- * Averaged data were plotted in the figure, with error bars of $\pm \sigma$.

- Distribution of AM affects pathway formation
 - →quantified in terms of tortuosity

Results – Tortuosity Factor

- Tortuosities ↑ with ↑ in active material particle surface area (Sa_{sphere}<Sa_{cylinder}<Sa_{cube})
 where Sa is the surface area for each active material shape
- Above a certain tortuosity threshold, the formation of pathways is very difficult
- General trend can be seen in terms of average effective conductivity and tortuosity factor

Random nature of pathway formation obscures this

Results - Resolution

- Electrodes consisting of spherical active material particles at varying resolution created
- Trends expected to be similar for all AM shapes
- General increase in conductivity with voxel size
- Lowest resolution utilized for speed; experimental validation required

Results - Domain Size

- Domain must be large enough to obtain consistent results
- ❖ Domain length/Particle diameter ratio chosen as >5
- ❖ To ensure that the generated models were free from variation of size effect, the coefficient of variation was evaluated for the final conductivity data.

$$CV = \frac{\sigma}{\mu}$$
 0.0

where σ is the standard deviation and μ is the arithmetic mean

Evaluation of coefficient of variation reveals acceptable level of homogeneity

Results – Model Validation

Adapted from V. S. Battaglia, G. Liu, X. Song and H. Zheng, *J. Electrochem. Soc.*, **159**, A214 (2012).

- Separate set of models made to correlate with results of Liu et. al.
- Percolation achieved at 4% acetylene black by weight for both sets
- A decrease in AM results in an increase in effective conductivity for both sets of data
- Simulations deviate from experimental data in terms of expected trends based on CA/B ratio

Stein, Wiegmann, Mukherjee, in preparation (2013).

Conclusions

- ❖ At loadings greater than 35% the active material shape does not have a significant bearing on the effective conductivity.
- ❖ For loadings less than 35%, spherical active material particles will likely yield the greatest return for effective conductivity – although this effect could be obscured.

Outlook/Future Work

- Experimentally validate results and assumptions
- The modeling technique utilized can be extended to more complex geometries for property analysis
- 3D structures generated via this method can be coupled with external programs for electrochemical analysis

Acknowledgements

The financial support of the Texas A&M
 University Department of Mechanical, ROE
 Program and USRG Program is greatly appreciated.

ENERGY AND TRANSPORT SCIENCES LABORATORY

Department of Mechanical Engineering Texas A&M University

Thank you!