# Numerical Determination of Transport Properties of Catalyst Layer, Microporous Layer and Gas Diffusion Layer

Jürgen Becker, Math2Market GmbH, Kaiserslautern

10<sup>th</sup> Symposium for Fuel Cell and Battery Modelling and Experimental Validation

Bad Boll March 19-20, 2013



## Math2Market GmbH

- M2M is a spin-off from the Fraunhofer Institute for Industrial Mathematics ITWM
- M2M was founded in Sep. 2011 by 3 developers of the GeoDict software.
- M2M has aquired all rights for marketing and developing GeoDict from Fraunhofer.
- M2M is located in the "Innovationszentrum Westpfalz" at Kaiserslautern.
- Close cooperation with Fraunhofer ITWM.





## **GeoDict: The Virtual Material Laboratory ...**











## ... Applied to Porous Transport Layers of PEFC

- 1. Determine Transport Properties from 3D Images
  - a. GDL Analysis Based on Tomography Image
  - b. Catalyst Layer Model Based on FIBSEM Images
- 2. Create 3D Structure Models Virtually
  - a. GDL Model: Fibers, Binder, Compression
  - b. MPL Design Study



# 1. Determine Transport Properties from 3D Images

a. GDL Analysis Based on Tomography Image



## **Tomography Image**

### Input: tomography image

- Carbon fibres of diameter ~ 7 μm
- Hydrophobic PTFE coating
- Porosity 78%
- Layer thickness ~ 200 μm
- Picture shows area of size 717x717 μm
- Resolution: 0.7 μm/voxel

#### Aim:

 Find capillary pressure curve, relative permeability, relative diffusivity



# **Permeability**

# Macroscopic description (homogenized porous media model)

Darcy's law : 
$$u = -\frac{1}{\mu} \kappa \nabla p$$

u : average flow velocity

κ : permeability tensor *unknown* 

 $\mu$ : viscosity p: pressure

# Microscopic description (pore structure model)

Stokes equation:  $-\mu\Delta u + \nabla p = 0$ 

Boundary conditions: no-slip on fibre surface, pressure drop  $\kappa$  can be determined from the solution!



# **Relative Permeability**

### Two-step approach:

- 1. Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase.
  - Idea: a pore is filled with the non-wetting fluid (=water), if  $p_c \ge \frac{2\sigma}{r} \cos \beta$
  - Drainage and imbibition (connectivity to reservoir)





the remaining pore phase (=air)



# **Capillary Pressure Curve**

#### Parameters:

Contact angle: 140

#### Results:

- Bubble point (drainage): 8.8 kPa
- Saturation at bubble point: 20.8%





# **Relative Permeability**





## **Water Distribution at Bubble Point**



p = 10.6 kPa (r=10.5 mm)



# 1. Determine Transport Properties from 3D Images

b. Catalyst Layer Model Based on FIBSEM Images

i. Reconstruction

ii. Simulations on 3D data



## i. Reconstruction from SEM Images

SEM by IMTEK, Uni Freiburg





## Reconstruction Algorithm

- 1.Place holes randomly
- 2.Place particles randomly (not inside holes)
- 3. Fill small pores between particles





# **Optical Comparison**







# **Variation of Porosity**





# **Conductivity and Diffusivity**

| Porosity | Relative Diffusivity | Relative Conductivity |
|----------|----------------------|-----------------------|
| 73 %     | 51.8 %               | 7.1 %                 |
| 65 %     | 38.1 %               | 13.4 %                |
| 57 %     | 25.6 %               | 21.1 %                |



## ii. Simulations on 3D FIBSEM Data

- Pore Structure obtained from FIBSEM Data (IMTEK, Uni Freiburg)
- Cannot distinguish between Ionomer and Carbon





## Results





Concentration field from diffusion simulations

#### Determine:

Pore size distribution, diffusivity

T. Hutzenlaub, J. Becker, R. Zengerle und S. Thiele, Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a PEMFC, J. Power Sources 227, pp 260-266, 2013.



# 2. Create 3D Structure Models Virtually

a. GDL Model: Fibers, Binder and Compression



## **Gas Diffusion Layer Model**

## Created with a stochastic process

## Input:

- Porosity
- Fiber diameter and type
- Anisotropy
- (Fiber crimp)
- (Weight% binder)









# Compression

Aim: how does the structure change due to clamping pressure?

Current development together with Fraunhofer



- transverse isotropic elastic modulus for fibers
- isotropic elastic modulus for binder
- 30% compression





# 2. Create 3D Structure Models Virtually

b. MPL Design Study



# **MPL Design Study**

- Step 1: Create model of MPL structure, determine effective parameters for MPL alone
- Step 2: Create model for GDL+MPL, determine diffusivity and conductivity of combined layer
- Step 3: What changes when we change MPL design parameters?

Zamel, Becker, Wiegmann, J. Power Sources 207, 2012.



## **Comparison of Different MPL**

## Create MPLs with

- same porosity & carbon particle sizes
- different pore size distributions





## **Comparison of Different MPL**



## Diffusivity:

Becker, Wieser, Fell, Steiner, Int. J. Heat and Mass Transfer 54, 2011.

## Conductivity:

Wiegmann, Zemitis, Tech Report 94, ITWM, 2006.

| Case | Conductivity | Diffusivity |
|------|--------------|-------------|
| 1    | 0.094        | 1.92        |
| П    | 0.120        | 1.78        |
| Ш    | 0.104        | 1.65        |
| IV   | 0.092        | 1.59        |
| V    | 0.095        | 1.67        |





# **Variation of MPL Porosity**





## **Summary: Material Properties**

#### GDL:

- (saturation dependent) diffusivity, (saturation dependent) permeability, electric conductivity, heat conductivity
- pore size distribution, capillary pressure

#### MPL:

- (Knudsen) diffusivity, electric conductivity, heat conductivity
- pore size distribution

#### CL:

- pore size distribution, surface or contact areas, contact lines
- protonic conductivity, electronic conductivity, (Knudsen) diffusivity

Caveat: Results cannot be better than the 3D structure model permits.



## Thank You!



The Virtual Material Laboratory www.geodict.com























