Numerical Determination of Transport Properties of Catalyst Layer, Microporous Layer and Gas Diffusion Layer Jürgen Becker, Math2Market GmbH, Kaiserslautern 10th Symposium for Fuel Cell and Battery Modelling and Experimental Validation Bad Boll March 19-20, 2013 ## Math2Market GmbH - M2M is a spin-off from the Fraunhofer Institute for Industrial Mathematics ITWM - M2M was founded in Sep. 2011 by 3 developers of the GeoDict software. - M2M has aquired all rights for marketing and developing GeoDict from Fraunhofer. - M2M is located in the "Innovationszentrum Westpfalz" at Kaiserslautern. - Close cooperation with Fraunhofer ITWM. ## **GeoDict: The Virtual Material Laboratory ...** ## ... Applied to Porous Transport Layers of PEFC - 1. Determine Transport Properties from 3D Images - a. GDL Analysis Based on Tomography Image - b. Catalyst Layer Model Based on FIBSEM Images - 2. Create 3D Structure Models Virtually - a. GDL Model: Fibers, Binder, Compression - b. MPL Design Study # 1. Determine Transport Properties from 3D Images a. GDL Analysis Based on Tomography Image ## **Tomography Image** ### Input: tomography image - Carbon fibres of diameter ~ 7 μm - Hydrophobic PTFE coating - Porosity 78% - Layer thickness ~ 200 μm - Picture shows area of size 717x717 μm - Resolution: 0.7 μm/voxel #### Aim: Find capillary pressure curve, relative permeability, relative diffusivity # **Permeability** # Macroscopic description (homogenized porous media model) Darcy's law : $$u = -\frac{1}{\mu} \kappa \nabla p$$ u : average flow velocity κ : permeability tensor *unknown* μ : viscosity p: pressure # Microscopic description (pore structure model) Stokes equation: $-\mu\Delta u + \nabla p = 0$ Boundary conditions: no-slip on fibre surface, pressure drop κ can be determined from the solution! # **Relative Permeability** ### Two-step approach: - 1. Use pore morphology method (Hilpert, 2001) to determine distribution of air and water phase. - Idea: a pore is filled with the non-wetting fluid (=water), if $p_c \ge \frac{2\sigma}{r} \cos \beta$ - Drainage and imbibition (connectivity to reservoir) the remaining pore phase (=air) # **Capillary Pressure Curve** #### Parameters: Contact angle: 140 #### Results: - Bubble point (drainage): 8.8 kPa - Saturation at bubble point: 20.8% # **Relative Permeability** ## **Water Distribution at Bubble Point** p = 10.6 kPa (r=10.5 mm) # 1. Determine Transport Properties from 3D Images b. Catalyst Layer Model Based on FIBSEM Images i. Reconstruction ii. Simulations on 3D data ## i. Reconstruction from SEM Images SEM by IMTEK, Uni Freiburg ## Reconstruction Algorithm - 1.Place holes randomly - 2.Place particles randomly (not inside holes) - 3. Fill small pores between particles # **Optical Comparison** # **Variation of Porosity** # **Conductivity and Diffusivity** | Porosity | Relative Diffusivity | Relative Conductivity | |----------|----------------------|-----------------------| | 73 % | 51.8 % | 7.1 % | | 65 % | 38.1 % | 13.4 % | | 57 % | 25.6 % | 21.1 % | ## ii. Simulations on 3D FIBSEM Data - Pore Structure obtained from FIBSEM Data (IMTEK, Uni Freiburg) - Cannot distinguish between Ionomer and Carbon ## Results Concentration field from diffusion simulations #### Determine: Pore size distribution, diffusivity T. Hutzenlaub, J. Becker, R. Zengerle und S. Thiele, Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a PEMFC, J. Power Sources 227, pp 260-266, 2013. # 2. Create 3D Structure Models Virtually a. GDL Model: Fibers, Binder and Compression ## **Gas Diffusion Layer Model** ## Created with a stochastic process ## Input: - Porosity - Fiber diameter and type - Anisotropy - (Fiber crimp) - (Weight% binder) # Compression Aim: how does the structure change due to clamping pressure? Current development together with Fraunhofer - transverse isotropic elastic modulus for fibers - isotropic elastic modulus for binder - 30% compression # 2. Create 3D Structure Models Virtually b. MPL Design Study # **MPL Design Study** - Step 1: Create model of MPL structure, determine effective parameters for MPL alone - Step 2: Create model for GDL+MPL, determine diffusivity and conductivity of combined layer - Step 3: What changes when we change MPL design parameters? Zamel, Becker, Wiegmann, J. Power Sources 207, 2012. ## **Comparison of Different MPL** ## Create MPLs with - same porosity & carbon particle sizes - different pore size distributions ## **Comparison of Different MPL** ## Diffusivity: Becker, Wieser, Fell, Steiner, Int. J. Heat and Mass Transfer 54, 2011. ## Conductivity: Wiegmann, Zemitis, Tech Report 94, ITWM, 2006. | Case | Conductivity | Diffusivity | |------|--------------|-------------| | 1 | 0.094 | 1.92 | | П | 0.120 | 1.78 | | Ш | 0.104 | 1.65 | | IV | 0.092 | 1.59 | | V | 0.095 | 1.67 | # **Variation of MPL Porosity** ## **Summary: Material Properties** #### GDL: - (saturation dependent) diffusivity, (saturation dependent) permeability, electric conductivity, heat conductivity - pore size distribution, capillary pressure #### MPL: - (Knudsen) diffusivity, electric conductivity, heat conductivity - pore size distribution #### CL: - pore size distribution, surface or contact areas, contact lines - protonic conductivity, electronic conductivity, (Knudsen) diffusivity Caveat: Results cannot be better than the 3D structure model permits. ## Thank You! The Virtual Material Laboratory www.geodict.com