Modelling oil entrapment in sea ice on the basis of 3d micro-tomographic images

Sönke Maus ¹ Sabine Leisinger² Margret Matzl²
Martin Schneebeli ² Andreas Wiegmann³

¹Geophysical Institute, University of Bergen, NORWAY
²WSL Swiss Federal Institute for Snow and Avalanche Research, Davos, SWITZERLAND

³Math2Market GmbH, Kaiserslautern, GERMANY

Port and Ocean Engineering under Arctic Conditions, Espoo, June 09–14, 2013

Overview

- Background
 - Oil-in-ice problems (sea ice)
 - Oil-through-ice movement: experiments and modelling
- ► Present approach/methods
 - Centrifuging sea ice
 - Computed micro-tomography (μ CT): 3d sea ice microstructure
 - Numerical analysis/simulations (of 3-d μ CT images)
- Results
 - ▶ Permeability, pore space
 - Oil uptake capacity of sea ice
- Conclusions

Interaction of Oil and Sea Ice

(AMAP, Arctic Pollution Issues, 1998)

- 1. Pooling under ice 2. Leads-ridges-brash 3. Uptake by pores

Interaction of Oil and Sea Ice

(AMAP, Arctic Pollution Issues, 1998

Where and when is spilled oil released from drifting sea ice?

Laboratory studies

rig. I di permedicii into eco lec

(Otsuka et al., MTS/IEEE Oceans'04, 2004)

Results from mostly laboratory studies:

Winter: Oil becomes encapsulated

Spring/summer: Oil eventually migrates to surface

Oil uptake in laboratory

(Karlsson et al., POAC, 2011)

- by threshold brine porosity of 8-15%
- by distance from oil lens (3 cm Karlsson; 10 cm Otsuka et al.)
- by 30 % oil saturation of pore space

Previous Studies and Conjectures: oil storage capacity

- Under ice pooling capacity
 - ▶ 10 to 60 L/ m^2 (Fingas and Hollebone, Mar. Poll. Bull. 2003)
 - ▶ 0.5 to 16 L/m³ spreading model (Wilkinson et al., GRL, 2007)
- ▶ Uptake by pore space (based on porosity threshold 10-15 %)
 - Winter: $< 2 L/m^2$
 - ➤ Spring: 5 to 10 L/m² (Petrich et al., Cold Reg. Sci. Technol., 2013)

 \implies uptake by pore space is \approx 20 % of under ice pooling capacity ?

Eytrapolation Issues: Laboratory to Field

(Karlsson et al., POAC, 2011

Do laboratory results reflect field conditions?

- thickness of oil pools/layers (lab: 3-8 mm)
- comparability of microstructure and permeability
- (boundary conditions: ocean, atmosphere, tank)

Present Approach

"There are no mathematical algorithms to predict the movement of oil through ice. This aspect then requires extensive studies." (Fingas and Hollebone, 2003)

- → Present work flow:
 - 1. Rapid sectioning of sea ice cores
 - 2. Transport samples at in situ temperatures
 - 3. Centrifugation of brine at *in situ* temperatures
 - 4. (Cooling sequence: centrifugation at lowered temperatures)
 - 5. Storage below eutectic temperature (-80 °C) stable samples
 - Absorption tomography: distinguishes air, ice and solid salts
 Air: connected network ↔ salt: disconnected inclusions
 - 7. 3-d image postprocessing (filtering, segmentation)
 - 8. Pore space ananlysis and permeability simulation

Work Flow from Field to CT Image Analysis

1. Field Sampling

2. Computed Tomography

3. Refrigerated Centrifuge

4. Analysis/simulations with GeoDICT

Sampling and Preparation

After sampling

After first cutting

Field Conditions, April 2011, Longyearbyen

Location in Adventbay, Svalbard

Meteorological conditions at Longyearbyen airport

Temperature, Salinity, Brine Volume Fractionj

Brine porosity \(\text{(\text{cooling}} \)

Brine porosity \(\text{(\text{cooling}} \)

Brine porosity \(\text{(\text{(\text{Cooling}} \)

Brine porosity \(\text{(\text{(\text{(\text{Cooling}} \)

Brine porosity \(\text{(\texi{(\text{(\te\ti}\)}\text{(\text{(\text{(\text{(\text{(\text{(\text{(\texi{(\)}\text{(\text{(\texi\}\text{(\text{(\texi\)}\}\text{(\text{(\te\ti}\text{(\text{(\text{(\)}\texi{(\texi{(\texi{(\texi{(\)}\}\tex

an^o

0 0

In situ ice temperature and salinity Note: $S_{water} \approx 35 \text{ g/kg}$

Cooling sequence: temperature and brine volume fraction

Interpretation of Centrifuging Results

Non-centrifugable brine volume fraction "Saturation": $(1-\phi_d)/\phi$

Centrifuged brine volume fraction ϕ_d versus total brine volume ϕ

Trapped brine fraction increases with decreasing brine content Linear fit indicates a threshold $\phi \approx 1$ %

Previous Work and Percolation Hypothesis

Borehole field data - proposed percolation threshold $\phi_c \approx 0.05$ has remained unconfirmed (Golden et al., 2007)

Laboratory experiments - different methods and ice types imply high scatter (Petrich et al., 2006, see also Maksym and Jeffries, 2000)

Work Flow from Field to CT Image Analysis

Young ice, 1 cm from bottom

Young ice - 5 cm from bottom

Summer first-year ice, 40 cm f. interface

Computed Tomography and Permeability Simulations

Computed Tomography

- MicroCT 40 and MicroCT 80, Scanco Medical AG
- \blacktriangleright 37 mm FOV (horizontal image width), 18 μ m resolution
- lacktriangleright pprox 1 hour scanning time per centimeter sample height
- ho pprox 5 Gigabyte raw data per centimeter
- ▶ imaging at -20 °C

Simulations with GeoDICT

- $ightharpoonup X \times Y \times Z \approx 1200 \times 1200 \times 1500$ voxels
- ▶ 18 μ m voxel size \Rightarrow 2 x 2 x 2.5 cm
- ▶ Flow simulation in stacks ($\approx 1200 \times 1200 \times 300$ voxels)
- ▶ Hardware: 32 GB RAM, 1cm \approx 4 days on 3 Ghz Quadcore PC
- ▶ Stokes-Solver, Darcy flow (low Re): $V = \frac{K}{\mu} \frac{dP}{dz}$
- Vertical permeability K

Permeability Simulations with GeoDict

Small stacks $(2 \times 2 \times 0.55 \text{ cm})$

From 4-5 stacks in series (1/K average)

No permeability threshold down to 2% porosity

Physics of Oil Entrainment - Capillary Pressure

Oil-brine buyancy has to overcome surface tension:

$$P_c = \sigma_{nw} \cos(\theta) \left(\frac{1}{R_1} + \frac{1}{R_2} \right), \tag{1}$$

simplifies for circular cross sections to

$$H = \frac{2\sigma_{nw}\cos(\theta)}{g\Delta\rho R}.$$
 (2)

- $ightharpoonup \sigma_{nw}$ is oil-water surface tension, g gravity acceleration
- \blacktriangleright θ the oil-ice contact angle
- R pore radius
- $ightharpoonup \Delta
 ho$ oil brine density difference
- ▶ H oil pool or layer thickness
- ⇒ Oil entrainment depends on pore sizes and pool thickness.

Pore Sizes and Capillary Pressure

Typical pore sizes of young ice

Median pore diameter D_{50}

Oil infiltration potential of sea ice (50% of pore space)

Pore Sizes and Capillary Pressure

Median pore diameter D_{50}

Pore diameter D_{10} , 10% of pores are larger

Oil infiltration potential of sea ice (10% versus 50% of pore space)

Displacement of brine by oil, simulation

Young ice, 1 cm from bottom

Young ice - 5 cm from surface

Summer first-year ice, 40 cm f. interface

Summer first-year ice, 30 cm f. interface

160 Pa corresponds approximately to a \approx 10 cm oil pool

Summary and Outlook

Sea ice permeability:

- ▶ Displays no percolation threshold down to 2% porosity
- Previous models need to be revised

:

Summary and Outlook

Sea ice permeability:

- ▶ Displays no percolation threshold down to 2% porosity
- Previous models need to be revised

Conclusions on oil uptake by sea ice:

- Depends on pool thickness and pore sizes no threshold
- ▶ Older summer ice:
 - ▶ 10 cm oil pool sufficient for > 50% (of pore space) oil infiltration
 - Oil uptake similar as under ice pooling capacity!

Summary and Outlook

Sea ice permeability:

- Displays no percolation threshold down to 2% porosity
- Previous models need to be revised

Conclusions on oil uptake by sea ice:

- Depends on pool thickness and pore sizes no threshold
- Older summer ice:
 - 10 cm oil pool sufficient for > 50% (of pore space) oil infiltration
 - Oil uptake similar as under ice pooling capacity!

Outlook:

- ightharpoonup μ CT imaging, in particular of ice at different ages
- ightharpoonup Validate spill experiments by μ CT flow modelling
- lacktriangle Combine large scale transport with $\mu {\sf CT}$ flow modelling
- General: microstructure prediction + evaluation of physical properties by μ CT (e.g. elastic modulus, electric and thermal conductivity; transport of particles/dissolved matter)