Numerical Analysis of Transport Processes in Porous Layers

Jürgen Becker, Andreas Wiegmann Math2Market GmbH

ModVal 11, Winterthur 2014

Math2Market GmbH

- Founded September 21 2011 in Kaiserslautern.
- Spin-off of Fraunhofer Institute for Industrial Mathematics ITWM.
 Located in the Business and Innovation Center in Kaiserslautern.
- Business based on GeoDict software formerly developed by ITWM.
 Continued close cooperation with ITWM on algorithms.

- GeoDict® exists since 2001, first sales in 2003, first sales for filtration (FilterDict® module) in 2005.
- The intellectual property rights to the GeoDict software belong to Math2Market GmbH since January 1, 2013.

Outline

- 1. General approach: the virtual material lab
- 2. Import and analysis of CT data
- 3. Creating realistic 3D structure models
- 4. Determination of transport properties

1. General Approach: The Virtual Material Lab

Experiment / Lab

Porous Material

Experiment / Lab

Properties are:

- pore size distribution
- effective diffusivity
- permeability
- stiffness
- . .

Properties are:

- pore size distribution
- effective diffusivity
- permeability
- stiffness
- . .

Properties are:

- pore size distribution
- effective diffusivity
- permeability
- stiffness
- ...

Properties are:

- pore size distribution
- effective diffusivity
- permeability
- stiffness
- ...

2. Import and Analysis of CT Images

Import of CT Data (GDL)

Transport Properties at Different Compression Levels

Data from Paul Scherrer Institute:

- Tomography images of Toray TGP H 060 at different compression levels
- Diffusivity, permeability and conductivity were measured at different compression levels experimentally

Becker, Flückiger, Reum, Büchi, Marone, Stampanoni, 2009, J. Electrochem. Soc. 156

Transport Properties at Different Compression Levels

Becker, Flückiger, Reum, Büchi, Marone, Stampanoni, 2009, J. Electrochem. Soc. 156

Transport Properties at Different Compression Levels

Becker, Flückiger, Reum, Büchi, Marone, Stampanoni, 2009, J. Electrochem. Soc. 156

FIBSEM Data of Catalyst Layer

Pore Structure obtained from FIBSEM Data (IMTEK, Uni Freiburg)

T. Hutzenlaub, J. Becker, R. Zengerle und S. Thiele, J. Power Sources 227, pp 260-266, 2013.

FIBSEM Data of Catalyst Layer

Pore Structure obtained from FIBSEM Data (IMTEK, Uni Freiburg)

T. Hutzenlaub, J. Becker, R. Zengerle und S. Thiele, J. Power Sources 227, pp 260-266, 2013.

FIBSEM Data of Catalyst Layer

Concentration field from diffusion simulations

Determine:

Pore size distribution, diffusivity

T. Hutzenlaub, J. Becker, R. Zengerle und S. Thiele, J. Power Sources 227, pp 260-266, 2013.

3. Structure Generation

GeoDict Material Models

papers

ceramic materials

rocks

dense (sphere) packing

woven materials

foams

sponges

regular materials

GeoDict Material Models

ovens

d composites

bers

materials

bks

GeoDict Material Models

dense (sphere) packing woven materials foams

sponges regular materials

GeoDict Material Models

Catalyst Layer

ere) packing naterials Ims

GeoDict Material Models

Gas Diffusion Layer Model

Created with a stochastic process

Input:

- Porosity
- Thickness
- Fiber diameter and length
- Fiber cross sectional shape
- Fiber orientation tensor

Gas Diffusion Layer Model

Created with a stochastic process

Input:

- Porosity
- Thickness
- Fiber diameter and length
- Fiber cross sectional shape
- Fiber orientation tensor
- (Fiber crimp)

Gas Diffusion Layer Model

Created with a stochastic process

Input:

- Porosity
- Thickness
- Fiber diameter and length
- Fiber cross sectional shape
- Fiber orientation tensor
- (Fiber crimp)
- (Weight% binder)

Compression of a GDL

Clamping pressure applied to GDL

- Transverse isotropic elastic modulus for fibers
- Isotropic elastic modulus for binder
- 30% compression

10 min on Laptop13.5 mio grid points

4. Determination of Transport Properties

Permeability

Macroscopic description (homogenized porous media model)

Darcy's law : $u = -\frac{1}{\mu} \kappa \nabla p$

u : average flow velocity

 κ : permeability tensor $\emph{unknown}$

 μ : viscosity p : pressure

Permeability

Macroscopic description (homogenized porous media model)

Darcy's law : $u = -\frac{1}{\mu} \kappa \nabla p$

u : average flow velocity

κ : permeability tensor *unknown*

 μ : viscosity p : pressure

Microscopic description (pore structure model)

Stokes equation: $-\mu\Delta u + \nabla p = 0$

Boundary conditions: no-slip on fibre surface, pressure drop κ can be determined from the solution!

Design Study: Effect of GDL Porosity

- 7 µm fiber diameter
- 40 wt% binder content

Permeability and Diffusivity

Design Study: Fiber Diameter

- 12 vol% fibers
- binder content 40 wt% (leads to porosity 80%)

Permeability and Diffusivity

Thank You!

The Virtual Material Laboratory

www.geodict.com

