Berücksichtigung von In-Situ-Bedingungen in der digitalen Gesteinsphysik

DGMK / ÖGEW – Frühjahrstagung 22. & 23. April 2015

Sven Linden Tom Cvjetkovic Erik Glatt

Jens-Oliver Schwarz

Andreas Wiegmann

(Reservoir) Rock Physics

Analog outcrop

Well logging

Core analysis

Core Analysis

Image courtesy of M. Halisch (LIAG)

Core analysis provides data available from no other source:

- Allows visual examination of reservoir rocks
- Direct evidence of presence, quantity, distribution and deliverability of hydrocarbons
- Characterization of the pore system in reservior rocks (e.g. permeability, wettability)
- Allows to calibrate well log interpretation

Basic Principle of Digital Rock Physics (DRP)

Sampling

Imaging

Computing

Why DRP?

- Generates results faster and at lower costs
- Lower demand on the quality of rock material (e.g. cuttings)
- Non-destructive: derive all parameters from one core
- Fast solvers enable studies on the sensitivity of parameters
- Multi-scale analysis of parameters enables up-scaling

GeoDict

Math2Market Digital Rock Physics Portfolio

Electrical

Parameters

Geometrical parameters

Pore size distribution

Absolute permeability

Flow

parameters

- Relative permeability
- Multi-scale flow
- Capillary pressure curve

Formation factor

- Resistivity index
- Saturation exponent
- Cementation exponent

Mechanical parameters

- Elastic moduli
- Stiffness
- In-Situ conditions

Porosity

Percolation

Tortuosity

Surface area

Need for in-situ conditions in DRP

- Rocks in a reservoir are exposed to elevated pressures and temperatures (in-situ conditions)
- Generally in-situ conditions are not maintained during DRP workflows
- Changes in the pressure and temperature conditions
 - impact the properties of fluids: density, viscosity, solubility of phases in the fluid
 - lead to changes in the pore space


```
Support, Math2Market GmbH

16.04.15 15:43:58

Direction: Y Slice: 57 Depth: 0 File: overlay_structure.gdt
```


Need for in-situ conditions in DRP

Uncompressed image

Compressed image

Overlay image

In-Situ DRP techniques

In-Situ imaging

In-Situ modelling

Detailed In-situ DRP workflow In-situ simulation I

- Cropping
- Noise reduction
- Artifact reduction¹

Sampling

Imaging

Processing

ImportGeo

Detailed In-situ DRP workflow In-situ simulation II

Pore space

Segmentation

RockDict

Detailed In-situ DRP Workflow In-situ simulation III

ElastoDict

Mechanical Properties

- Two mineral phases
 - Quartz (E = 94.5 GPa, v = 0.074)
 - Void (E = 0 GPa, v = 0)
- Elastic properties

$$(E = 46.9 \text{ GPa}, \quad v = 0.108)$$

- FeelMath solver
 - Lippmann-Schwinger formulation for linear / non-linear mechanics
- Uniaxial macroscopic stress
 - Periodic boundary conditions
 - Stages [GPa]: 0.12, 0.24, 0.48, 0.71, 0.95, 1.43

Von-Mises-Stress field

PoroDict

Porosity and Pore Size Distribution

- Porosity: 18.4 changes to 15.7%
- Most frequent pore throat diameter: 8.8 changes to 7.4 µm
- Granulometry and Porosimetry

Absolute and Relative Permeability

- Absolute permeability: 108 changes to 66 mD
- Relative permeability of uncompressed state

Compressed states computations are under way

Two flow solver: LIR-Stokes and SIMPLE-FFT

MATH

ConductoDict

Electrical Conductivity

- Electrical Conductivity (Brine 5 S/m): 0.17 S/m
- Formation resistivity factor: 27 changes to 39
- Explicit-Jump immersed interface method

Potential field

Capillary Pressure

- Irreducible WP saturation: 18%
- Displacement pressure changes from 24 to 29 kPa
- Pore morphology method

Air drains Brine with saturation stages 75%, 50% and 25%

Solver Performance

- Flow and mechanics are expensive to compute
 - Relative permeability is most expensive
- Efficient solver allow:
 - Property simulations overnight
 - simulations on large data sets (>2000³)
 - sensitivity analysis

Porperty	Flow	Flow	Conductivity	Two phase distribution	Elasticity
Solver	SIMPLE-FFT	LIR Stokes	Explicit Jump	Pore Morphology	FeelMath
Runtime [h]	3.6	3.1	0.6	0.8	8.3
Memory [GB]	42.3	5.4	9.4	5.0	97.1

Runtime and memory requirements per direction for a data set of 720x720x1024 voxels. Computer with 16 Cores and 128 GB RAM.

Conclusions

- In-situ conditions for reservoir rocks are characterized by elevated pressure and temperature conditions
- Influence of temperatur can be considered by adjustment of the fluid and mineral phase input parameters
- Pressure changes affect the 3D geometry of the rock and have to be corrected
- Non-consideration of the in-situ pressure can lead to substantial errors in the derived DRP parameters
- Simulation of the in-situ conditions represents an alternative for in-situ measurements

Outlook

- **Evaluation** comparison of structures generated by:
 - in-situ CT measurements (Zeiss Xradia)
 - numerical compression of conventional CT scans
- Improvements of the workflow:
 - Segmentation of all present phases
 - Incorporation of special properties for grain-grain contacts in the simulation of elastic deformation

Thank you for your attention!

