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(Reservoir) Rock Physics

Analog outcrop Well logging Core analysis
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Core Analysis

Core analysis provides data
available from no other source:

B Allows visual examination of reservoir
rocks

B Direct evidence of presence, quantity,
distribution and deliverability of
hydrocarbons

B Characterization of the pore system in
reservior rocks (e.g. permeability,
wettability)

® Allows to calibrate well log interpretation

Image courtesy of M. Halisch (LIAG)
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Basic Principle of
Digital Rock Physics (DRP)
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Why DRP?

B Generates results faster and at
lower costs

B Lower demand on the quality of
rock material (e.g. cuttings)

B Non-destructive: derive all
parameters from one core

B Fast solvers enable studies on
the sensitivity of parameters

B Multi-scale analysis of
parameters enables up-scaling
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Math2Market GeoDict
Digital Rock Physics Portfolio

Geometrical Flow Electrical Mechanical
parameters parameters Parameters parameters
= Porosity = Absolute permeability = Formation factor = Elastic moduli
= Pore size distribution = Relative permeability = Resistivity index = Stiffness
= Percolation = Multi-scale flow = Saturation exponent = In-Situ conditions
= Surface area = Capillary pressure = Cementation
= Tortuosity curve exponent
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Need for in-situ conditions in DRP

B Rocks In a reservoir are exposed to
elevated pressures and temperatures
(in-situ conditions)

B Generally in-situ conditions are not
maintained during DRP workflows

B Changes in the pressure and
temperature conditions

¥ impact the properties of fluids:
density, viscosity, solubility of
phases in the fluid

. Iead to Changes in the pore Space | on: Y Slice: 57 Depth: 0 File: overlay_structure.gd
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Need for in-situ conditions in DRP

Uncompressed image Compressed image Overlay image
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IN-Situ DRP techniques

INn-Situ Imaging INn-Situ modelling
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Detalled In-situ DRP workflow
In-situ simulation |

= Cropping
= Noise reduction

= Artifact reduction?t

M AT H 1 H. Andra et al., ,,Digital rock physics benchmarks—Part I: Imaging and
segmentation,“ Computers & Geosciences, 2013 (43), pp. 25-32. © May-16 Math2Market GmbH
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Detailed In-situ DRP workflow ImportGeo
In-situ simulation |1

Solids Pore space

M AT H L H. Andra et al., ,Digital rock physics benchmarks—Part I: Imaging and
segmentation,”“ Computers & Geosciences, 2013 (43), pp.- 25-32. © May-16 Math2Market GmbH
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Detailed In-situ DRP Workflow RockDict
In-situ simulation 111

’
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Mechanical Properties

B Two mineral phases

W Quartz (E=94.5GPa, v =0.074)

® Void (E = 0 GPa, v =0)
B Elastic properties

(E = 46.9 GPa, v = 0.108)

B FeelMath solver

B Lippmann-Schwinger formulation
for linear / non-linear mechanics

B Uniaxial macroscopic stress
® Periodic boundary conditions

W Stages [GPa]: 0.12, 0.24, 0.48,
0.71, 0.95, 1.43
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Von-Mises-Stress field
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Porosity and Pore Size Distribution  Perobict

M Porosity: 18.4 changes to 15.7%

B Most frequent pore throat diameter: 8.8 changes to 7.4 um
B Granulometry and Porosimetry
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Absolute and Relative Permeability  Flowbict

B Absolute permeability: 108 changes to 66 mD
B Relative permeability of uncompressed state
B Compressed states computations are under way

B Two flow solver: LIR-Stokes and SIMPLE-FFT
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Electrical Conductivity ConductoDict

M Electrical Conductivity (Brine 5 S/m): 0.17 S/m
B Formation resistivity factor: 27 changes to 39

B Explicit-Jump immersed interface method
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Capillary Pressure SatuDict

B Irreducible WP saturation: 18%
® Displacement pressure changes from 24 to 29 kPa

B Pore morphology method
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Solver Performance

B Flow and mechanics are expensive to compute
¥ Relative permeability is most expensive

m Efficient solver allow:

¥ Property simulations overnight

¥ simulations on large data sets (=20003)
¥ sensitivity analysis

Porperty Flow Flow Conductivity Two phase Elasticity
distribution

Solver SIMPLE-FFT LIR Stokes Explicit Jump Pore Morphology FeelMath
Runtime [h] 3.6 3.1 0.6 0.8 8.3
Memory [GB] 42.3 5.4 9.4 5.0 97.1

Runtime and memory requirements per direction for a data set of 720x720x1024 voxels.
Computer with 16 Cores and 128 GB RAM.
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Conclusions

B In-situ conditions for reservoir rocks are characterized by
elevated pressure and temperature conditions

B Influence of temperatur can be considered by adjustment of the
fluid and mineral phase input parameters

B Pressure changes affect the 3D geometry of the rock and have
to be corrected

B Non-consideration of the in-situ pressure can lead to substantial
errors in the derived DRP parameters

B Simulation of the in-situ conditions represents an alternative for
INn-situ measurements
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Outlook

B Evaluation - comparison of structures generated by:
W in-situ CT measurements (Zeiss Xradia)
® numerical compression of conventional CT scans

B Improvements of the workflow:
B Segmentation of all present phases

® Incorporation of special properties for grain-grain contacts in
the simulation of elastic deformation
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Thank you for your attention!
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