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 Math2Market GmbH was founded September 2011 in Kaiserslautern. 

 Spin-off of Fraunhofer Institute for Industrial Mathematics, ITWM.

 Our product: GeoDict software 

 Sales

 Development and Customization

 Consulting

Who is Math2Market?
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What is GeoDict ?

Import of CT Images

Geometric Analysis 

Create 3D Models of
Microstructures Analyze Properties

Virtual Material 
Laboratory 
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Overview:

1. 3D GDL model and compression

2. Capillary pressure and saturation with variable wettability

3. Effect on relative permeability 

Mass Transport in a GDL with 
Variable Wettability

New!



© 2015 Math2Market GmbH 
5

3D GDL Model and Compression
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GDL:

 Carbon fibers, 7 µm diameter

 20 wt% binder

 200 µm thickness

Model

 1 µm resolution

 Voxel grid

 600x600x200 = 72 Mio. cells

 Stochastic process

FiberGeoStructure Model
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Compression

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

ElastoDict

0 0.05 0.1 0.15 0.2 0.25Compression
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Capillary Pressure and Saturation 

with Variable Wettability
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When does the gas enter a 
cylindrical capillary?

𝑝 =
4 𝜎

𝑑

𝑝 differential pressure

𝑑 pore diameter

𝜎 surface tension

complete wetting 𝛽 = 0

SatuDictCapillary Pressure 



© 2015 Math2Market GmbH 
10

When does the gas enter a 
cylindrical capillary?

𝑝 =
4 𝜎

𝑑
cos 𝛽

𝑝 differential pressure

𝑑 pore diameter

𝜎 surface tension

𝛽 contact angle

partial wetting 0° < 𝛽 < 90°

SatuDictCapillary Pressure 
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Use this relation between pore size and capillary pressure 

to predict the distribution of the phases 

Advantage:

 purely geometrical (fast calculations) 

Assumption:

 quasi-stationary phase distribution

 fixed contact angle

 cylindrical pores

SatuDictThe Idea of SatuDict
(State-of-the-art)



Non-wetting phase reservoir

Wetting phase reservoir

Pore Morphology:
Drainage 

 Assure connectivity of 
NWP to reservoir 

 Start: completely wet

 Start: large radius 
(i.e. small pc)

 Steps: smaller radius
(higher pc)
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Idea (Schulz et al, 2014)

 dilate by 𝑟 cos 𝜃

 erode by 𝑟

Result: contact angle 𝜃 on pore wall

Young-Laplace: 𝑝 =
2 𝜎

𝑟

𝑟: sphere radius (≠ pore radius) 

SatuDictNew Idea:
Can we have variable contact angles?

𝑟 cos 𝜃

𝑟

V.P. Schulz, E. A. Wargo, E. Kumbur, Pore-Morphology-Based 
Simulation of Drainage in Porous Media Featuring a Locally Variable 
Contact Angle, Transport in Porous Media, 2014.

http://www.researchgate.net/journal/0169-3913_Transport_in_Porous_Media
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SatuDictMultiple Contact Angles

1. Dilate material 1
2. Dilate material 2
3. Check 

connectivity
4. Erode 
5. Final result
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SatuDict2D Example

Contact angle 0°

Contact angle 40°

Water (non-wetting) 

Air (wetting)
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SatuDictStructure with Variable Wettability

 Marked a cylinder as area 
with higher wettability

Other options:

 distinguish between binder 
and fibers

 mark individual fibers

 ...
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SatuDictGDL Models

Constant Contact Angle Two Different Contact Angles
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SatuDictWater Entering into the GDL
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SatuDictWater Entering into the GDL
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SatuDictComparison

Constant Contact Angle Two Different Contact Angles
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SatuDictCompressed GDL Models

Constant Contact Angle Two Different Contact Angles
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SatuDictWater Entering Compressed GDL



© 2015 Math2Market GmbH 
23

SatuDictWater Entering Compressed GDL
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SatuDict3D Example with Compression

Constant Contact Angle Two Different Contact Angles
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Relative Permeability
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For each saturation:

1. Determine phase 
distribution

2. Calculate single-phase flow
(solve Stokes equation)

3. Find permeability
(average flow velocity)

Two-phase parameters
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New solver in GeoDict 2014: LIR

 Solves the Stokes equation

 On adaptive grid structure

Benefits

 Very low memory usage

 Very low runtime in high porosity geometries

 Runtime-optimized version LIR-Speed

 Memory-optimized version LIR-Memory

Benchmark (1024x1024x1200 voxels, 𝜙 = 88%)

New: Speed-up through Adaptive Grid

Methods LIR-Speed LIR-Memory SIMPLE-FFT EJ

PermZ [10−11m²] 5.04 5.04 5.03 5.04

Runtime [h] 1.3 2.3 37.2 16.0

Memory [GB] 14.3 7.2 93.3 70.1
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SatuDictRelative Permeability 
(Uncompressed GDL)
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1. Added a model for variable contact angles

2. Demonstrated effect on relative permeability 

Limitation: restriction on possible contact angles:

 If the difference between  𝑟 cos 𝜃 and 𝑟 is larger than the fiber 

diameter, the method produces artifacts.  

 Contact angles should not be close to 90°
(for a GDL model it works until 50°)

 No mixed (hydrophobic-hydrophilic) wettability possible.

Summary
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Thanks to:

• Sven Linden and Steffen Schwichow (Math2Market)

• Volker Schulz (DHBW Mannheim)

• Funding through OptiGaaII project

Thank You!

Visit us @  www.geodict.com

http://www.geodict.com/

