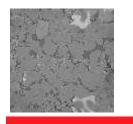
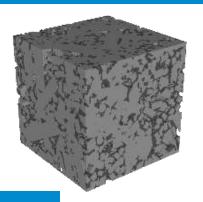

Mass Transport in a GDL with Variable Wettability

Jürgen Becker
Christian Wagner
Andreas Wiegmann

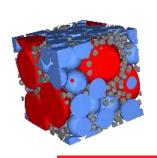


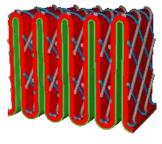
Who is Math2Market?

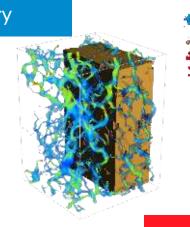
- Math2Market GmbH was founded September 2011 in Kaiserslautern.
- Spin-off of Fraunhofer Institute for Industrial Mathematics, ITWM.
- Our product: GeoDict software
 - Sales
 - Development and Customization
 - Consulting

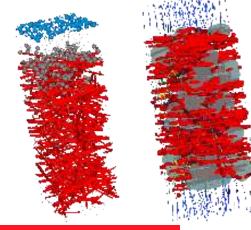


What is GeoDict?




Import of CT Images


Geometric Analysis


Virtual Material Laboratory

Create 3D Models of Microstructures

Analyze Properties

Mass Transport in a GDL with Variable Wettability

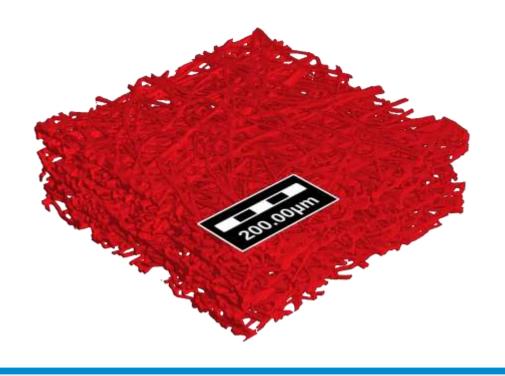
Overview:

- 1. 3D GDL model and compression
- 2. Capillary pressure and saturation with
- 3. Effect on relative permeability

variable wettability

3D GDL Model and Compression

Structure Model



GDL:

- Carbon fibers, 7 μm diameter
- 20 wt% binder
- 200 µm thickness

Model

- 1 µm resolution
- Voxel grid
- \blacksquare 600x600x200 = 72 Mio. cells
- Stochastic process

ElastoDict

Compression

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

FeelMath

Fraunhofer

ITWM

Runtime: 1h 17 min (8x)

Compression

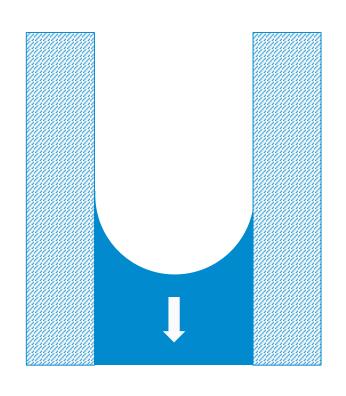
0

0.05

0.1

0.15

0.2

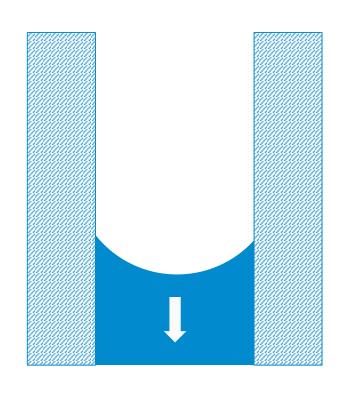

0.25

Capillary Pressure and Saturation with Variable Wettability

Capillary Pressure

When does the gas enter a cylindrical capillary?

$$p = \frac{4 \sigma}{d}$$


p differential pressure

d pore diameter

 σ surface tension

complete wetting $\beta = 0$

Capillary Pressure

When does the gas enter a cylindrical capillary?

$$p = \frac{4 \sigma}{d} \cos \beta$$

p differential pressure

d pore diameter

 σ surface tension

 β contact angle

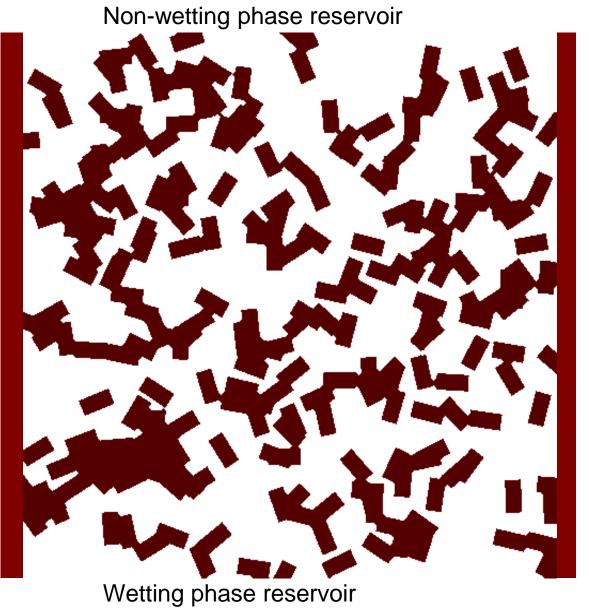
partial wetting $0^{\circ} < \beta < 90^{\circ}$

The Idea of SatuDict (State-of-the-art)

Use this relation between pore size and capillary pressure to predict the distribution of the phases

Advantage:

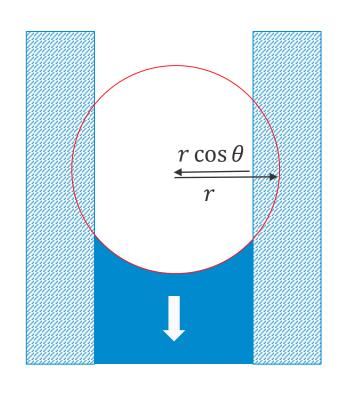
purely geometrical (fast calculations)


Assumption:

- quasi-stationary phase distribution
- fixed contact angle
- cylindrical pores

Pore Morphology: Drainage

- Assure connectivity of NWP to reservoir
- Start: completely wet
- Start: large radius (i.e. small p_c)
- Steps: smaller radius (higher p_c)



New Idea:

Can we have variable contact angles?

Idea (Schulz et al, 2014)


- dilate by $r \cos \theta$
- erode by r

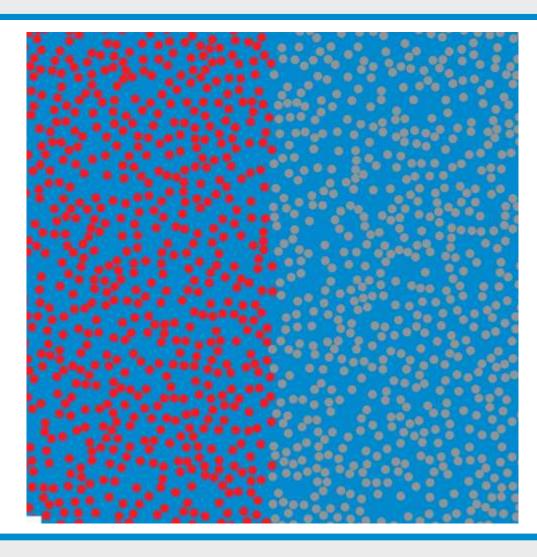
Result: contact angle θ on pore wall

Young-Laplace:
$$p = \frac{2 \sigma}{r}$$

r: sphere radius (\neq pore radius)

Multiple Contact Angles

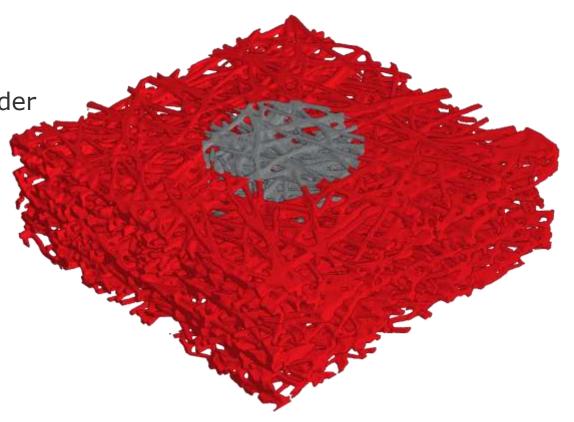
- Dilate material 1
- 2. Dilate material 2
- 3. Check connectivity
- 4. Erode
- 5. Final result



2D Example

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

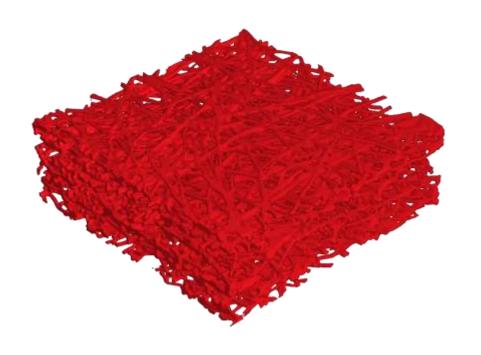
Structure with Variable Wettability

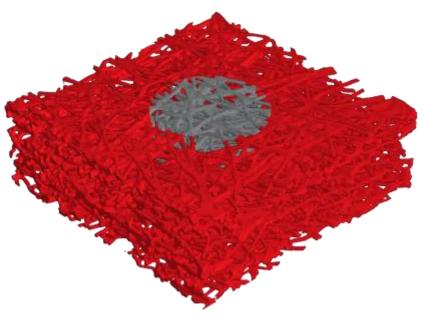


 Marked a cylinder as area with higher wettability

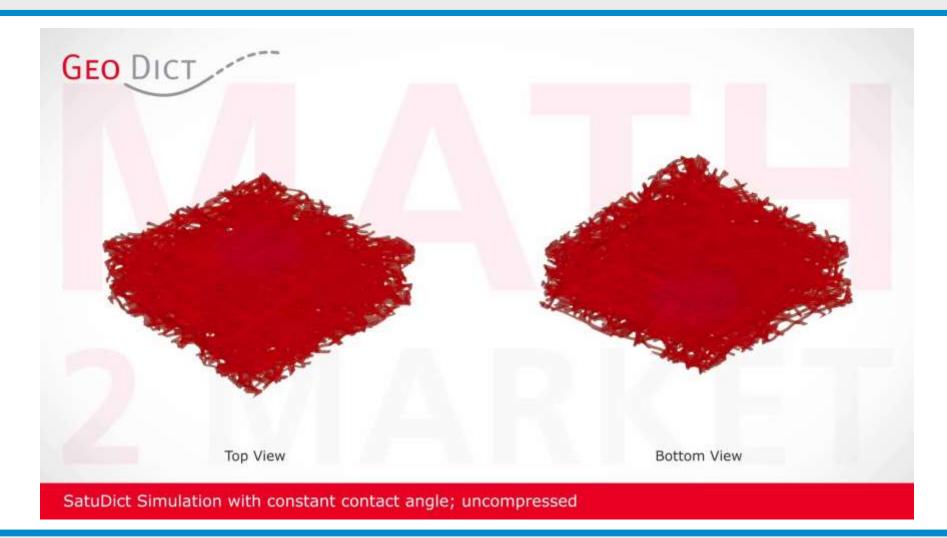
Other options:

distinguish between binder and fibers


mark individual fibers

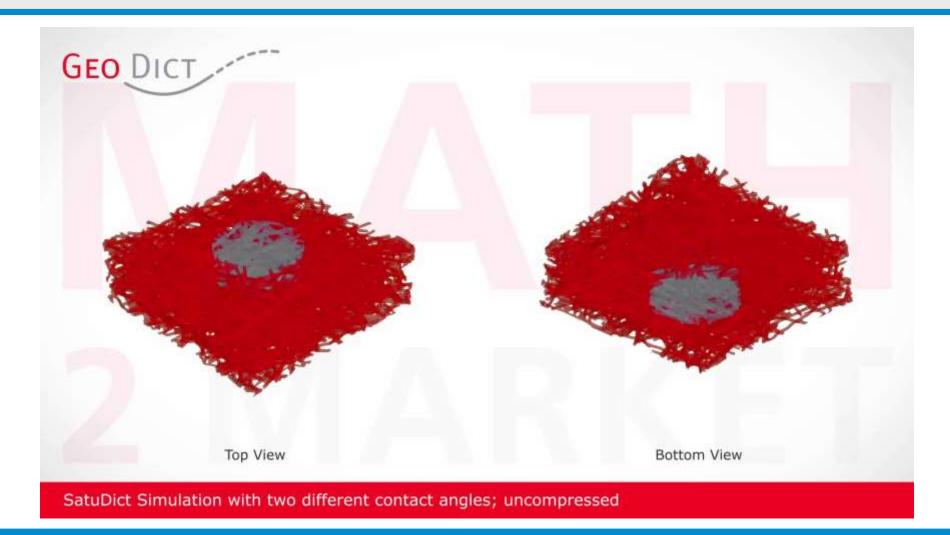


GDL Models

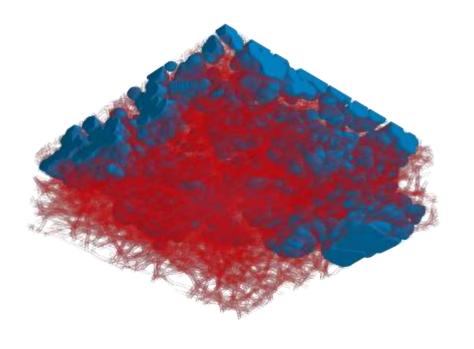

Constant Contact Angle

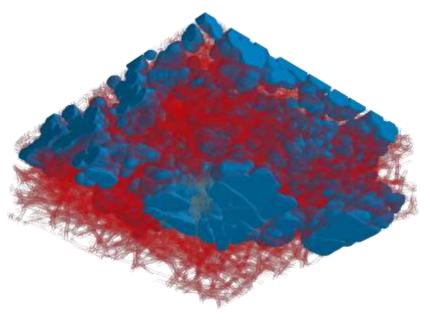
Two Different Contact Angles

Water Entering into the GDL



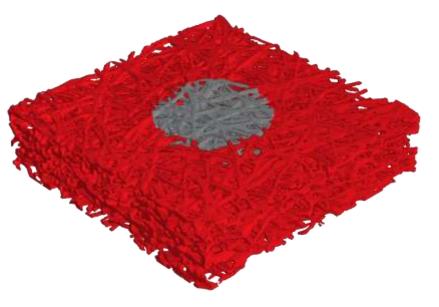
Water Entering into the GDL



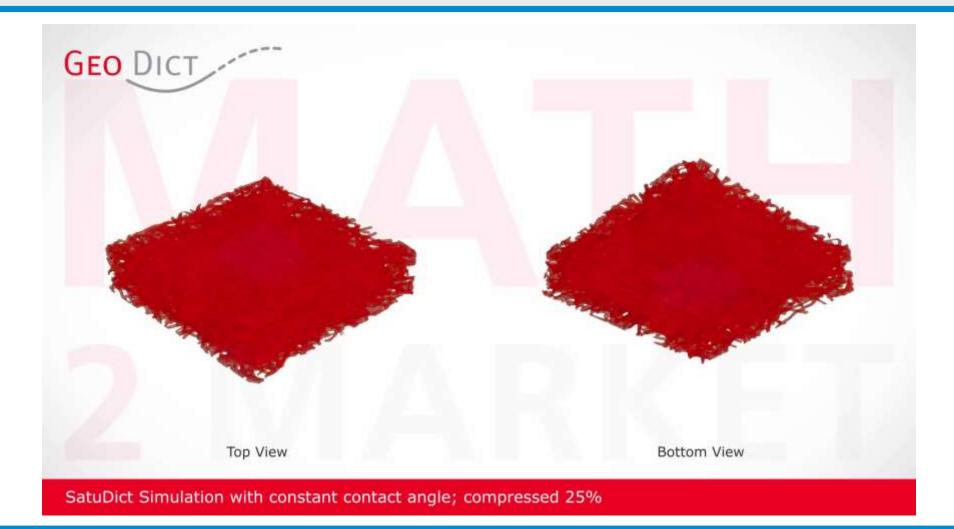


Comparison

Constant Contact Angle

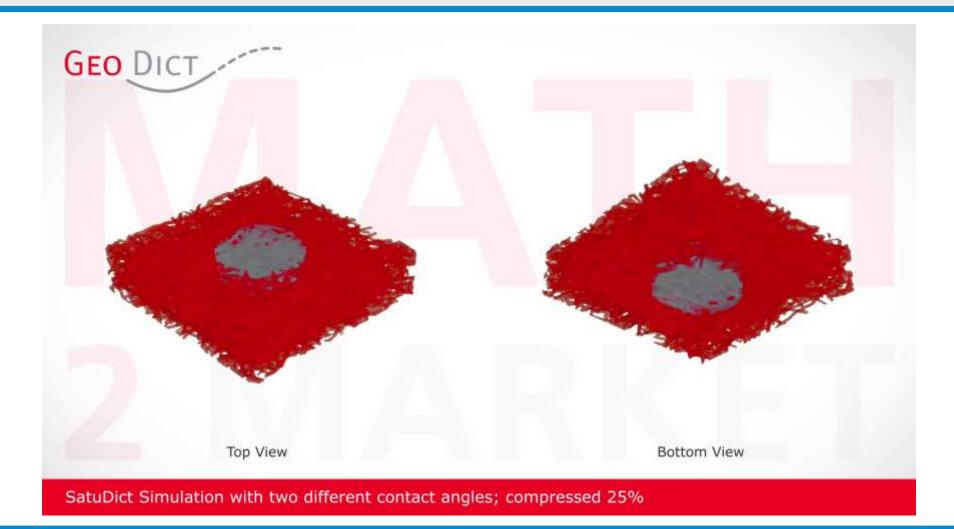

Two Different Contact Angles

Compressed GDL Models

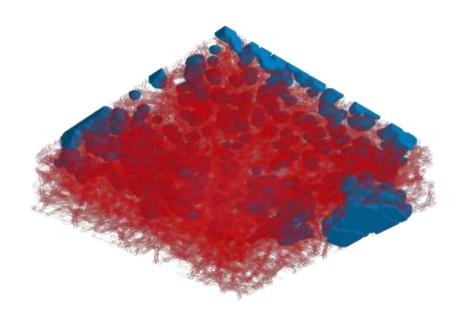

Constant Contact Angle

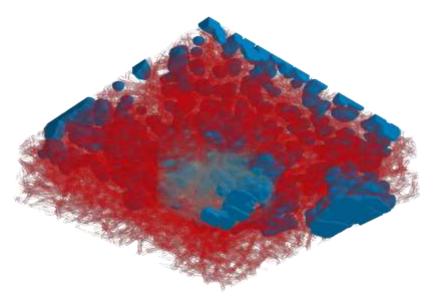
Two Different Contact Angles

Water Entering Compressed GDL



Water Entering Compressed GDL

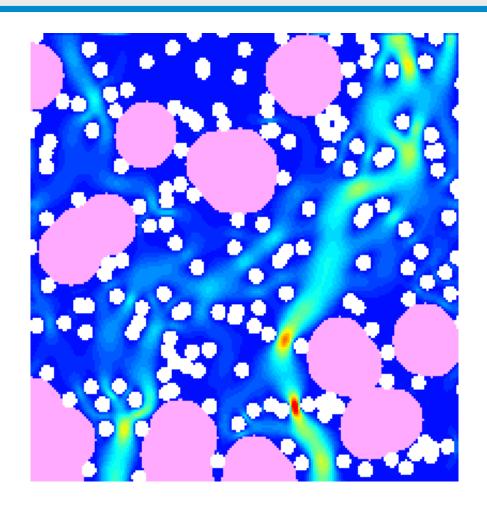




3D Example with Compression

Constant Contact Angle

Two Different Contact Angles


Relative Permeability

Two-phase parameters

For each saturation:

- 1. Determine phase distribution
- 2. Calculate single-phase flow (solve Stokes equation)
- 3. Find permeability (average flow velocity)

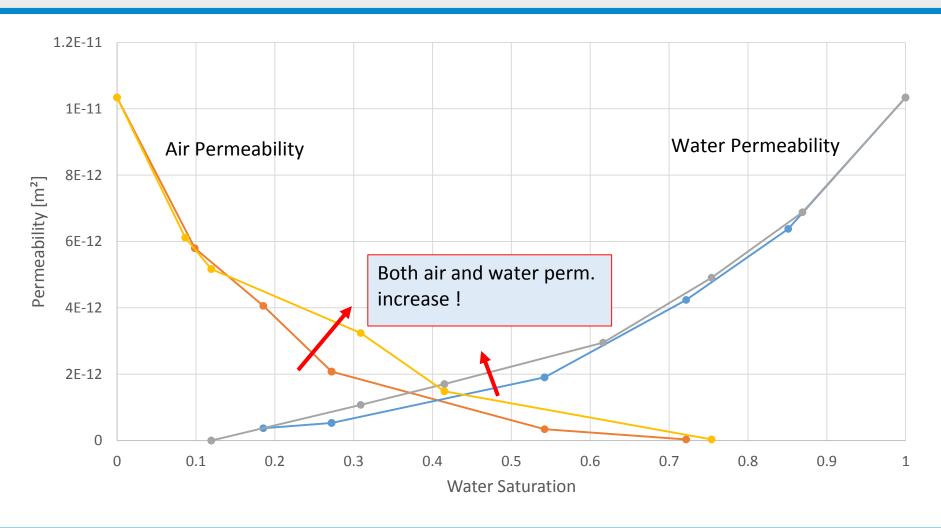
New: Speed-up through Adaptive Grid

New solver in GeoDict 2014: LIR

- Solves the Stokes equation
- On adaptive grid structure

Benefits

- Very low memory usage
- Very low runtime in high porosity geometries
- Runtime-optimized version LIR-Speed
- Memory-optimized version LIR-Memory


Benchmark (1024x1024x1200 voxels, $\phi = 88\%$)

						1											
							н	I	-					**	н		
		_										7					19
Control of the last			•					н				Т					10
40.0	-	_			н		ь	h				+	_	-	-	+	•
	-				н	-		н		н		н			•	ъ	
		-	-	-	Н	-		ш			-	+	_	Ь,	-		
					н			ш				4		ш			
							100						_		Н		
						н				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		н.			•	н	
										ж.					н		
	_				Œ		П	П		•			Ŧ		_	т	т
110	ш	-		-			-	н					•		-	•	•
1 1/6	ш	-		H.		4		н	-					н	-	-	-
	-	-		-		-		н	-		-	Ф			-		н
_		ы.						١.		н		4	_		4		
							н		Ŧ								
						н						н	-			Т	
																ш	
-	-					н		н	-	-	-	+	ш			8	
120	н	-		-	н	-			100			٠	-				to the
	_		-		ш	-						п.	-		ш		
	1 1						-	ш	-			т	77		п		-
: 接															н		-
9 (9						П	373	П					-		-	н	113
: 60 100						-		١.			н	-					•
						-				100		Ŧ	•		ш		
					н	-	-	ш	-		200		-	н	н		
	1			-	н			ш		-		9	-	н		Ħ	-
4 7 4 5 7 7 7	THE REAL PROPERTY.	н		200	100	ш				1	ы	4	4			4	F
	100														н		
										100			н				
						ı						Т		П			
												1	10				
the state of the last		-					-	н	•							-	4
	100							•	11				-				1

Methods	LIR-Speed	LIR-Memory	SIMPLE-FFT	EJ
PermZ $[10^{-11} \text{m}^2]$	5.04	5.04	5.03	5.04
Runtime [h]	1.3	2.3	37.2	16.0
Memory [GB]	14.3	7.2	93.3	70.1

Relative Permeability (Uncompressed GDL)

Summary

- 1. Added a model for variable contact angles
- 2. Demonstrated effect on relative permeability

Limitation: restriction on possible contact angles:

- If the difference between $r\cos\theta$ and r is larger than the fiber diameter, the method produces artifacts.
 - ⇒ Contact angles should not be close to 90° (for a GDL model it works until 50°)
- No mixed (hydrophobic-hydrophilic) wettability possible.

Thank You!

Thanks to:

- Sven Linden and Steffen Schwichow (Math2Market)
- Volker Schulz (DHBW Mannheim)
- Funding through OptiGaaII project

Visit us @ <u>www.geodict.com</u>

