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Some background information

B Math2Market creates and markets software for engineers and scientists
that want to analyze and design porous and composite materials based
on the material’s geometric inhomogeneity.

B The materials can come from pCT, FIB-SEM or models and are
represented as 3-dimensional images in the software.

B This software is called GeoDict, the Digital Material Laboratory.
B M2M is based in Kaiserslautern, Germany.

B M2M spun off from Fraunhofer .
Institute for Industrial Mathematics. 3

B Visit us at our booth

G EO D I CT 2 © Math2Market GmbH MAQRT(EHT



How is cake filtration simulated?

3. Track Particles

2. Flow Field

1. Filter Model

6. Repeat ...

Flow Field

S.

4. Deposit Particles
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Depth filtration vs. cake filtration

Clean filter medium Depth filtration Cake filtration
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Resolution: filter media

Unresolved media
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Resolution: particles

Media
Scale

Pleat / DPF |
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Scale Issue of Cake Filtration Simulation on
Uniform 3d Grids

B When all particles are much larger than the grid size, then solid
and empty cells suffice to represent them.

® When all particles are much smaller than the computational grid
size, then an homogeneous porous media approach works.

B Resolved and unresolved particles are both present in the poly-
disperse particles.

B When the particle size distribution includes larger particles and
smaller particles than the grid size, then sub-grid resolution and
parameters for inhomogeneous porous media are required.

B We describe two approaches to find these parameters.
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Computational Grid, Resolved

Computational Grid
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Resolved Particle
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Discretization of Resolved Particles

Computational Grid

Resolved Particle

Empty/Solid Cells
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Discretization of Resolved Particles

Computational Grid

Resolved Particle

Empty/Solid Cells
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Voxel Fiber Particle

Resolved Particles
: O

B Voxels are solid or empty

[ Stokes equation
—uAu + Vp=0, V-u=0 U viscosity
p density
u velocity
p pressure

B Particles are discretized into solid/empty grid cells

Output parameters: f,,4, (Mmaximal solid volume fraction)

and o,,,, (Mmaximal flow resistivity)
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Voxel Fiber Particle

Resolved Particles
: O

Example: QOil filtration — Multi Pass test; sieving model
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Computational Unresolved Particles

Computational Grid

03

Unresolved Particles
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Discretization of Resolved and Unresolved Particles

Computational Grid

5

Unresolved Particles

Porous Cells
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Discretization of Resolved and Unresolved Particles

Computational Grid

Unresolved Particles

Porous Cells
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Unresolved Particles Voxel Fiber Particle

O
B Voxels are solid, empty or porous
N Stokes-Brinkman equation
—uAd + oti+Vp =0, V-u=0 0. resistivity
In porous voxels:
B Local solidity f changes when a particle is added.
B When f,,,, IS reached, no more particles can be added.
B Local flow resistivity: SVE
L ey for 0< f < finax 2
0 =y Jmax Omax| 0 g
O-max fOr fmax S f S 1 E g
| <
Input parameters: f,,, (Maximal solid volume fraction) fmax

and o,,,, (maximal flow resistivity)
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Simulation Setup

- Air flow with particles

.I .' .
o  G—

No depth filtration, only cake filtration
Unresolved filter media: 48 pum thick, fixed permeability
Particles are caught on first touch

Particle diameter range between 1um and 15um

1. Vary resolution between 0.5 um per voxel and 24 um per voxel
2. Determine flow resistivity and cake solidity
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Particle Size Distribution

25 %

Dﬁ::i:tl; Mass %o Count %o
20 %
2.00 48.340
9.01 27.190 15 %
13.03 11.640 //
16.04 6.040 10 %
20.04 3.870
15.03 1.680 5 %
11,03 0780 /
7.03 0.330 0 % . . . .
4.97 0.120 O um 5 um 10 um 15 um 20 pm
1.82 0.013

SAE Ultrafine Dust (ISO 12103-1)
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Resolved Particles

« Simulation with all resolved particle works
by entering them as solid / empty and
computing Stokes flow in the pores.

« The solid volume fraction f_, and the
resistivity o,,,, agrees to the experimental
cake valules f,, and O,

G EO D I CT 19 © Math2Market GmbH MAQRT(EHT



Resolved Particles
Caught On First Touch

Resolution 0.5um

Pressure Drop

/

e

Os 500 s 1000 s

Result:
» Flow resistivity 14.4 e+6 kg/ms3s
= Cake solidity 0.1953

G EO D I CT 20 © Math2Market GmbH MAQRT(EHT



Fully Unresolved Particles
Caught On First Touch

Resolution 24um

Pressure Drop

//
e g
e -
500 s 1000 s
Input (porous voxels): Result:
Omax = 14.4 e+6 kg/ms3s » Flow resistivity 14.3 e+6 kg/ms3s
fmax = 0.1953 = Cake solidity 0.2027
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Unresolved Particles Voxel Fiber Particle

resolved media o

Example: Soot filtration — ceramic filter; caught on first touch model

MATH
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Unresolved Particles Voxel Fiber Particle

unresolved media ( 0 O

Filter material described by
* porosity

YNy RFEE YR
sttt TR WhE

* permeability

Fraction [1]
2.00e-01

e capturing probability model

~ 1.67e-01
1.34e-01

1.01e-01

6.81e-02

3.50e-02

2.00e-03-
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Computational Grid, Resolved & Unresolved Particles

Computational Grid

| — N

N~ 08 %

Resolved Particle Unresolved Particles

" GEO MATH



Discretization of Resolved and Unresolved Particles

Computational Grid

5

Resolved Particle Unresolved Particles

Empty/Solid/porous Cells Porous Cells
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Discretization of Resolved and Unresolved Particles

Computational Grid

Resolved Particle Unresolved Particles

Empty/Solid/porous Cells Porous Cells
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Resolved and Unresolved Particles

B Particles turn voxels into solid or porous.

N Stokes-Brinkman equation

In porous voxels:

B Local flow resistivity:

(L Omax for 0< < frnan
7= Omax for fmax < f =1
— for f =1

Input parameters: f,,,, (Mmaximal solid volume fraction)

and o,,,, (maximal flow resistivity)
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Fully Resolved vs. Fully Unresolved particles

24.0 um

" ® e,

0% e 0% o S 3% o g 8
e L we® L e :u.:b...

- ..- .

Unresolved
Particles

Resolved
Particles

D SVF=0 (empty)
0<SVF<1 (porous)

(solid)

SVF=1
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Mixed Resolved & Unresolved particles
for varying resolutions
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Results for Partially Resolved particles
with parameters for Unresolved particles

Resolution Input parameters Resulting cake
finax O max Solidity Flow
[10° kg/m3s] resistivity
[10° kg/m3s]
24 pm 0.1953 14.4 0.2027 14.30
0.5 pm solid/empty solid/empty 0.1953 14.40
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Results for Partially Resolved particles

with parameters for Unresolved particles

Resolution

Input parameters

Resulting cake

finax O max Solidity Flow
[10° kg/m3s] resistivity
[10° kg/m3s]

24 um 0.1953 14.4 0.2027 14.30

8 um 0.1953 14.4 0.1953 10.17

4 um 0.1953 14.4 0.1422 4.02

2 um 0.1953 14.4 0.1346 3.09

1 pm 0.1953 14.4 0.1535 4.41
0.5 pm

solid/empty solid/empty 2.1953

Solidity too low
Need higher f,,.x

;14.40

Resistivity too low
Need higher 0,4

GEO
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Results for Partially Resolved particles
with parameters for Unresolved particles

inf

—Fully resolved

—Partially resolved

Flow resistivity
Omax

0 fnax 0.5 1
Solid volume fraction
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Quick parameter fitting

Resolution 4 pm Input parameters Resulting cake
finax O max Solidity Flow
[10° kg/m3s] resistivity

[10° kg/m3s]

1. Use result of — 0.1953 14.40 0.1422 4.02
resolved model

2. Use other values ——y 0.4000 200.00 0.2505 50.00
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Quick parameter fitting

Resolution 4 pum Input parameters Resulting cake
finax O max Solidity Flow
[10° kg/m3s] resistivity
[10° kg/m3s]
1. Use result of —| 0.1953 14.40 | 0.1422 4.02
resolved model
3. Assume linear dependency
« solidity from f,,, —= 0.2956 56.34 0.1904 13.50
o resistivity from o,,,,
2. Use other values —— 0.4000 200.00 0.2505 50.00
MATH
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Results for mixed resolutions with fitted parameters

Resolution

Input parameters

Resulting cake

finax O max Solidity Flow
[10° kg/m3s] resistivity
[10° kg/m3s]
24 pm 0.1953 14.4 0.2027 14.3
8 pm 0.1953 20.19 0.1967 14.4
4 pm 0.2956 56.34 0.1904 13.5
2 um 0.4600 170.00 0.1949 13.8
1 pm 0.5000 441.50 0.1928 15.2
0.5 um solid/empty solid/empty 0.1953 14.4
G EO MATH

35

© Math2Market GmbH

2




Summary of previous work

B Solidity and flow resistivity of a filter cake can be modeled by
Simulating one cake filtration with fully resolved particles
Simulating two cake filtrations with partly resolved particles
Parameter fitting
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Questions:

B Do local solidity and local flow resistivity distributions match for
resolved and mixed resolution computations?

B Can we estimate f,,,, and o,,,, from just a single resolved cake
filtration simulation?

Reduce estimation effort from three to one simulation

Develop a theory or provide a data base with effective parameters
depending on particle size distribution and grid resolutions

B A methodology to measure local solidity and local flow resistivity on
square blocks of 1x1x1, 2x2x2, 4x4x4 cells with the finest resolution
results (0.5um)

1x1x1 -=> 0.5um
2%2x2 -=> 1.0um
4x4x4 -=> 2.0um
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Comparison: Computations with Resolved particles vs.
Partially Resolved particles and up to Unresolved particles
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Comparison of SVF probability density

Probablllty of SVF for Voxellength 1.0um
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Comparison of SVF cumulative probability

Probability of SVF for Voxellength 1.0um
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Conclusions and outlook

B Cake formation can be modeled at different resolutions
B Parameters f,,,, and o,,4, Can be estimated by linear fitting

B Local solidity and flow resistivity of Fully Resolved and Partially
Resolved computations match

B The o function for different resolutions can be estimated from
Fully Resolved computations

B Open questions:
How to estimate f,,,, from one Fully Resolved cake filtration?
Can the f,,,x, omax Model be replaced?
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