## Simulation Based Design of Fuel Cell and Battery Materials

#### Math2Market GmbH









#### Who is Math2Market?

- Math2Market GmbH was founded 2011 in Kaiserslautern.
- Spin-off of Fraunhofer Institute for Industrial Mathematics, ITWM.
- Today: 13 full-time, 6 part-time employees, turnover >2 Mio € / year
- Our product: GeoDict software
  - Sales
  - Development and Customization
  - Consulting



GeoDict is a digital material laboratory

 Computer Aided Material Engineering and Design by providing Geometric models and preDictions of material properties.





#### GeoDict is a digital material laboratory

 Computer Aided Material Engineering and Design by providing Geometric models and preDictions of material properties.



#### GeoDict is a digital material laboratory

 Computer Aided Material Engineering and Design by providing Geometric models and preDictions of material properties.





Create 3D Models of Micro-structures





#### GeoDict is a digital material laboratory

 Computer Aided Material Engineering and Design by providing Geometric models and preDictions of material properties.





Create 3D Models of Micro-structures



Geometric Analysis of 3D Structures





#### GeoDict is a digital material laboratory

 Computer Aided Material Engineering and Design by providing Geometric models and preDictions of material properties.



Create 3D Models of Micro-structures



#### Where GeoDict is used:

Electrochemistry

Fuel cell media & battery materials

Composites

Mostly automotive, lightweight materials

Filtration

Mostly automotive, filter media & filters

Weaves and Paper

Paper forming and dewatering, Metal Wire Mesh

Personal Care

Wipes, Feminine Care, Baby Care

Oil and Gas

Digital rock physics, digital sand control





### The basic idea: Microstructures define macroscopic properties!





Gas Diffusion

Layer







| Li-Ion  |
|---------|
| Cathode |

Diffusion and

in the micro-

battery.

electrochemistry

structure define

the behavior of a

Two-phase flow properties of the GDL influence the behavior of a PEM fuel cell

#### Fiber Reinforced Polymer

Fiber orientation and fiber solid volume fraction define the strength / failure behavior of a FRP component

#### Metal Wire Mesh

Through pore and permeability define the filtration properties and the pressure loss

Sandstone

Pore space and permeability define the oil/gas reservoir behavior











#### Gas Diffusion Layer (GDL)



- Fibers ( ~ 7 µm diam.)
- Pore Sizes ~ 30 µm
- Thickness 200-400 µm







#### Microporous Layer (MPL)



- Carbon Agglomerates
- Pore Sizes ~ 100 nm







# GDL and MPL ■ MPL Penetration





- Carbon Agglomerates
- Ionomer
- Platinum Particles
- Pore Sizes ~ 100 nm





#### Functions of pores:

- Oxygen transport
- Water removal

#### Functions of solids:

- Electric conductivity
- Heat distribution
- Mechanical stability





15

### **Computer Aided Material Engineering**





#### Step 1: Get your material into the computer

#### CT-Scan

- Allows resolutions down to 0.5 µm / voxel
- Result is an 3D image with up to 2000<sup>3</sup> voxels

(voxel = volume pixel)





#### Step 1: Get your material into the computer

#### CT-Scan

- Allows resolutions down to 0.5 µm / voxel
- Result is an 3D image with up to 2000<sup>3</sup> voxels

(voxel = volume pixel)

Large number of grid cells requires specialized solutions.





#### Step 2: Analyze your material

#### Compute geometrical properties:

- Pore size distribution
- Percolation paths
- Fiber diameters

#### Compute physical properties:

- Effective diffusivity
- Thermal conductivity
- Permeability





#### **Step 3: Create new materials virtually**

#### Choose e.g.

- Porosity
- Fiber diameter
- Fiber length
- Anisotropy

...and let FiberGeo generate a nonwoven model





#### **Step 4: Analyze and Optimize**

#### Vary geometrical input:

- Binder content
- Porosity
- Fiber shape





#### Optimize for:

- Ohmic resistance
- Oxygen and Water Transport
- Mechanical stability







### **Project Examples**





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

0

0.05

0.1

0.15

0.2





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

O

0.05

0.1

0.15

0.2





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

C

0.05

0.1

0.15

0.2





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

C

0.05

0.1

0.15

0.2





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

C

0.05

0.1

0.15

0.2





Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:





Runtime: 1h 17 min (8x)



Compression

C

0.05

0.1

0.15

0.2





### Project Example: Water Entering into the GDL



SatuDict Simulation with constant contact angle; uncompressed





### Project Example: Water Entering into the GDL – Patterned Wettability



SatuDict Simulation with two different contact angles; uncompressed





### Project Example: Water Entering into the GDL -



Constant Hydrophobicity

**Patterned Wettability** 





#### Project Example: Li-Ion Battery Cathode from FIB-SEM







Material Information:
ID 00: Electrolyte
ID 01: LiCoO2
ID 02: Binder

Three-dimensional reconstruction of a LiCoO2 Li-Ion battery cathode Tobias Hutzenlaub, Simon Thiele, Roland Zengerle, and Christoph Ziegler

Raw Image Stack

Segmented Images

3D-Material





### **Project Example: Pressure Driven Flow**



### **Project Example:** Diffusive Flux



### **Beyond Fuel Cells & Batteries: Create Structure Models**





#### Beyond Fuel Cells & Batteries: Simulate Damage Tests of Composite Materials

- Compute stress-strain curve under cyclic loading
- Use nonlinear material laws (UMAT)
- Use damage model (UMAT)









#### Beyond Fuel Cells & Batteries: Simulate Flow Through Rock Pores

- Permeability: 108 mD (ex-situ)
- Permeability: 66 mD (in-situ @ 1.4 GPa geostatic pressure)
- Relative permeability at different saturations







#### **Summary**

The digital material laboratory GeoDict allows to

- 1. Import CT scans
- 2. Create 3D micro-structure models
- Analyze 3D structures geometrically
- 4. Predict physical properties that depend on the micro-structure

#### Thank You!

Visit us at

Booth D63

www.geodict.com





















