The Influence of Variable Wettability on Mass Transport Properties of GDLs

Jürgen Becker, Christian Wagner, Sven Linden, Andreas Wiegmann

ModVal Lausanne, 23.03.2016

Who is Math2Market?

- Math2Market GmbH was founded 2011 in Kaiserslautern.
- Spin-off of Fraunhofer Institute for Industrial Mathematics, ITWM.
- Today: 12 full-time, 6 part-time employees, turnover >2 Mio € / year
- Our product: GeoDict software
 - Sales
 - Development and Customization
 - Consulting

Import of CT Scans

Import of CT Scans

Create 3D Models of Microstructures

Import of CT Scans

Geometric Analysis of 3D Structures

Create 3D Models of Microstructures

Create 3D Models of Microstructures

... with applications in:

Filtration

Mostly automotive, filter media & filters

Personal Care

Wipes, Feminine Care, Baby Care

Electrochemistry

Fuel cell media & battery materials

Weaves and Paper

Paper forming and dewatering, Metal Wire Mesh

Composites

Mostly automotive, lightweight materials

Oil and Gas

Digital rock physics, digital sand control

The Influence of Variable Wettability on Mass Transport Properties of GDLs

Overview:

- 1. 3D GDL model and compression
- 2. Computing permeability
- 3. Capillary pressure and saturation with variable wettability
- 4. Effect on relative permeability

3D GDL Model and Compression

Structure Model

GDL:

- Carbon fibers, 7 µm diameter
- 20 wt% binder
- 200 µm thickness

Model

- 1 µm resolution
- Voxel grid
- 600x600x200 = 72 Mio. cells
- Stochastic process

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

0

0.05

0.1

0.15

0.2

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

0

0.05

0.1

0.15

0.2

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

C

0.05

0.1

0.15

0.2

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

C

0.05

0.1

0.15

0.2

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

C

0.05

0.1

0.15

0.2

Fibers: linear elastic, transverse isotropic

Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)

Compression

C

0.05

0.1

0.15

0.2

Computing Permeability

Flow solver finds interstitial flow field **u**.

 $\overline{\mathbf{u}}$: Average (superficial) flow velocity

 P_1 : Pressure average over inflow plain

 P_2 : Pressure average over outflow plain

K: Permeability tensor

Darcy-Law:
$$\overline{\mathbf{u}} = -\frac{\mathbf{K}}{\mu} \frac{(P_2 - P_1)}{L}$$

Pressure P₁ Pressure P₂

Flow Simulation

Solver runtime (12x parallel): 5 min 41 s

Compression and Permeability

Capillary Pressure and Saturation with Variable Wettability

Capillary Pressure

When does the gas enter a cylindrical capillary?

$$p = \frac{4 c}{d}$$

p differential pressure

d pore diameter

 σ surface tension

complete wetting $\beta = 0$

Capillary Pressure

When does the gas enter a cylindrical capillary?

$$p = \frac{4 \sigma}{d} \cos \beta$$

p differential pressure

d pore diameter

 σ surface tension

 β contact angle

partial wetting $0^{\circ} < \beta < 90^{\circ}$

Can we have variable contact angles?

Idea (Schulz et al, 2014)

- dilate by $r \cos \theta$
- erode by r

Result: contact angle θ on pore wall

Young-Laplace:
$$p = \frac{2 \sigma}{r}$$

r: sphere radius (≠ pore radius)

V.P. Schulz, E. A. Wargo, E. Kumbur, Pore-Morphology-Based Simulation of Drainage in Porous Media Featuring a Locally Variable Contact Angle, <u>Transport in Porous Media</u>, 2014.

Can we have variable contact angles?

Restriction on possible contact angles:

- If the difference between $r\cos\theta$ and r is larger than the fiber diameter (or wall thickness), the method produces artifacts.
 - ⇒ Contact angles should not be too close to 90°
- No mixed (hydrophobic-hydrophilic) wettability possible.

V.P. Schulz, E. A. Wargo, E. Kumbur, Pore-Morphology-Based Simulation of Drainage in Porous Media Featuring a Locally Variable Contact Angle, <u>Transport in Porous Media</u>, 2014.

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

- Contact angle 0°
- Contact angle 40°
- Water (non-wetting)
- Air (wetting)

Structure with Variable Wettability

Marked a cylinder as area with higher wettability

Structure with Variable Wettability

Marked a cylinder as area with higher wettability

Other options:

- distinguish between binder and fibers
- mark individual fibers

..,

GDL Models

Constant Contact Angle

Two Different Contact Angles

Water Entering into the GDL

SatuDict Simulation with constant contact angle; uncompressed

Water Entering into the GDL

SatuDict Simulation with two different contact angles; uncompressed

Comparison

Constant Contact Angle

Two Different Contact Angles

Relative Permeability

Saturation Dependent Permeability

Saturation Dependent Permeability

For each saturation:

1. Determine phase distribution

Saturation Dependent Permeability

For each saturation:

- 1. Determine phase distribution
- 2. Calculate single-phase flow (solve Stokes equation)
- Find permeability
 (average flow velocity)

Through-Plane Permeability (Uncompressed GDL)

Through-Plane Permeability (Uncompressed GDL)

Through-Plane Diffusivity (Uncompressed GDL)

Through-Plane Diffusivity (Uncompressed GDL)

Relative Permeability – Computational Costs

Challenge:

- Parameter that is most expensive to compute:
 - Requires to solve one flow problem per saturation level

Observation:

Low saturation states are computationally most expensive

Relative Permeability - Computational Costs

Challenge:

- Parameter that is most expensive to compute:
 - Requires to solve one flow problem per saturation level

Observation:

Low saturation states are computationally most expensive

Improvements:

- Restart of computations
 - Compute permeability from highest to lowest saturation state
 - Use result from previous computation to speed up the next one

Relative Permeability - Computational Costs

Challenge:

- Parameter that is most expensive to compute:
 - Requires to solve one flow problem per saturation level

Observation:

Low saturation states are computationally most expensive

Improvements:

- Restart of computations
 - Compute permeability from highest to lowest saturation state
 - Use result from previous computation to speed up the next one
- New stopping criterion:
 - Relative error compared to the permeability of the fully saturated state

Speed-Up

Comparison:

- Uncompressed GDL
- 600 x 600 x 200 Voxels
- 10 Saturation levels each
- Parallelization: 12x

Runtime needed:

Old: 6h 22 min

New: 58 min

Summary

- 1. Generated a 3D GDL model
- Computed compressed structure
- Computed permeability
- 4. Computed water saturation with different contact angles
- 5. Computed transport properties for different water saturations
- 6. Speed-up of permeability computations

Thank You!

Thanks to:

- Steffen Schwichow (Math2Market)
- Volker Schulz (DHBW Mannheim)
- Funding through OptiGaall project

Visit us @ www.geodict.com

