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 Math2Market GmbH was founded 2011 in Kaiserslautern. 

 Spin-off of Fraunhofer Institute for Industrial Mathematics, ITWM.

 Today: 12 full-time, 6 part-time employees, turnover >2 Mio € / year

 Our product: GeoDict software 

 Sales

 Development and Customization

 Consulting

Who is Math2Market ?
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What can GeoDict do?
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What can GeoDict do?

Import of CT Scans
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What can GeoDict do?

Import of CT Scans

Create 3D Models of
Microstructures
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What can GeoDict do?

Import of CT Scans

Geometric Analysis
of 3D Structures

Simulate advection, diffusion
particle transport, stiffness

Create 3D Models of
Microstructures
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… with applications in:

Filtration Mostly automotive, 
filter media & filters

Personal Care Wipes, Feminine 
Care, Baby Care

Electrochemistry Fuel cell media & 
battery materials

Weaves and Paper
Paper forming and 
dewatering, Metal 
Wire Mesh

Composites Mostly automotive, 
lightweight materials

Oil and Gas Digital rock physics, 
digital sand control
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Overview:

1. 3D GDL model and compression

2. Computing permeability  

3. Capillary pressure and saturation with variable wettability

4. Effect on relative permeability

The Influence of Variable Wettability on Mass Transport 
Properties of GDLs
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3D GDL Model and Compression
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GDL:
 Carbon fibers, 7 µm diameter
 20 wt% binder
 200 µm thickness

Model
 1 µm resolution
 Voxel grid
 600x600x200 = 72 Mio. cells
 Stochastic process

Structure Model
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Compression Simulation 

0 0.05 0.1 0.15 0.2 0.25Compression

Fibers: linear elastic, transverse isotropic
Binder: linear elastic, isotropic

Solver:

Runtime: 1h 17 min (8x)
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Flow solver finds interstitial flow field u.

Computing Permeability

Darcy-Law:
L

PP )( 12 −
−=
µ
Ku

L

Pressure P2Pressure P1

Average (superficial) flow velocity

Pressure average over inflow plain

Pressure average over outflow plain

Permeability tensor

:u

:1P

:K

:2P
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Solver runtime (12x parallel): 5 min 41 s

Flow Simulation 
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Compression and Permeability 
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Capillary Pressure and Saturation 
with Variable Wettability
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When does the gas enter a cylindrical capillary?

𝑝𝑝 differential pressure
𝑑𝑑 pore diameter
𝜎𝜎 surface tension

complete wetting 𝛽𝛽 = 0

Capillary Pressure 

𝑝𝑝 =
4 𝜎𝜎
𝑑𝑑
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When does the gas enter a cylindrical capillary?

𝑝𝑝 differential pressure
𝑑𝑑 pore diameter
𝜎𝜎 surface tension
𝛽𝛽 contact angle

partial wetting 0° < 𝛽𝛽 < 90°

Capillary Pressure 

𝑝𝑝 =
4 𝜎𝜎
𝑑𝑑

cos𝛽𝛽
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Idea (Schulz et al, 2014)
 dilate by 𝑟𝑟 cos𝜃𝜃

 erode by 𝑟𝑟
Result: contact angle 𝜃𝜃 on pore wall

Young-Laplace: 𝑝𝑝 = 2 𝜎𝜎
𝑟𝑟

𝑟𝑟: sphere radius (≠ pore radius) 

Can we have variable contact angles?

𝑟𝑟 cos𝜃𝜃

𝑟𝑟

V.P. Schulz, E. A. Wargo, E. Kumbur, Pore-Morphology-Based 
Simulation of Drainage in Porous Media Featuring a Locally 
Variable Contact Angle, Transport in Porous Media, 2014.

http://www.researchgate.net/journal/0169-3913_Transport_in_Porous_Media
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Idea (Schulz et al, 2014)
 dilate by 𝑟𝑟 cos𝜃𝜃

 erode by 𝑟𝑟
Result: contact angle 𝜃𝜃 on pore wall

Young-Laplace: 𝑝𝑝 = 2 𝜎𝜎
𝑟𝑟

𝑟𝑟: sphere radius (≠ pore radius) 

Can we have variable contact angles?

𝑟𝑟 cos𝜃𝜃

𝑟𝑟

V.P. Schulz, E. A. Wargo, E. Kumbur, Pore-Morphology-Based 
Simulation of Drainage in Porous Media Featuring a Locally 
Variable Contact Angle, Transport in Porous Media, 2014.

Restriction on possible contact angles:

 If the difference between  𝑟𝑟 cos 𝜃𝜃 and 
𝑟𝑟 is larger than the fiber diameter (or 
wall thickness), the method produces 
artifacts.  
⇒ Contact angles should not be too 

close to 90°

 No mixed (hydrophobic-hydrophilic) 
wettability possible.

http://www.researchgate.net/journal/0169-3913_Transport_in_Porous_Media
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Contact angle 0°
Contact angle 40°
Water (non-wetting) 
Air (wetting)

2D Example
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Structure with Variable Wettability

 Marked a cylinder as area 
with higher wettability
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Structure with Variable Wettability

 Marked a cylinder as area 
with higher wettability

Other options:
 distinguish between binder 

and fibers
 mark individual fibers
 ...
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GDL Models

Constant Contact Angle Two Different Contact Angles
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Water Entering into the GDL
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Water Entering into the GDL
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Comparison

Constant Contact Angle Two Different Contact Angles



© Math2Market GmbH45

Relative Permeability
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Saturation Dependent Permeability
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For each saturation:

1. Determine phase distribution

Saturation Dependent Permeability
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For each saturation:

1. Determine phase distribution
2. Calculate single-phase flow

(solve Stokes equation)
3. Find permeability

(average flow velocity)

Saturation Dependent Permeability
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Both air and water
perm. increase for
patterned structure !
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Through-Plane Diffusivity (Uncompressed GDL)
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Through-Plane Diffusivity (Uncompressed GDL)
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improves!
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Relative Permeability – Computational Costs

Challenge:
 Parameter that is most expensive to compute:
 Requires to solve one flow problem per saturation level

Observation:
 Low saturation states are computationally most expensive
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Relative Permeability – Computational Costs

Challenge:
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 Requires to solve one flow problem per saturation level
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Improvements: 
 Restart of computations
 Compute permeability from highest to lowest saturation state
 Use result from previous computation to speed up the next one 
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Relative Permeability – Computational Costs

Challenge:
 Parameter that is most expensive to compute:
 Requires to solve one flow problem per saturation level

Observation:
 Low saturation states are computationally most expensive

Improvements: 
 Restart of computations
 Compute permeability from highest to lowest saturation state
 Use result from previous computation to speed up the next one 

 New stopping criterion:
 Relative error compared to the permeability of the fully saturated state
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Speed-Up 
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Comparison: 
 Uncompressed GDL
 600 x 600 x 200 Voxels
 10 Saturation levels each
 Parallelization: 12x

Runtime needed:
 Old: 6h 22 min
 New:     58 min
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Summary

1. Generated a 3D GDL model
2. Computed compressed structure
3. Computed permeability
4. Computed water saturation with different contact angles
5. Computed transport properties for different water saturations
6. Speed-up of permeability computations
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Thank You!

Thanks to:
• Steffen Schwichow (Math2Market)
• Volker Schulz (DHBW Mannheim)
• Funding through OptiGaaII project

Visit us @  www.geodict.com

http://www.geodict.com/
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