Filter Media Simulation and Filter Processes Simulation Based on μ CT Scans and SEM Images

Liping Cheng, Jürgen Becker, Cornelia Kronsbein, Rolf Westerteiger, Andreas Wiegmann

12th WORLD FILTRATION CONGRESS

APRIL 11-15, 2016 · TAIPEI

How can simulations help to improve a filter?

Step 1: Understand the existing filter material

- CT Scan
- Simulations on CT Scan

Step 2: Create a model of the existing material

- Analyze CT Scan
- Create structure model
- Simulations on Structure model

Step 3: Modify the structure model

Sample Structure: Cabin Air Filter

- Commercially available filter
- CT scan by service provider
 RJL Micro&Analytic

Step 1:

Understand the existing filter material

Determine Flow Rate or Pressure Drop

Stationary Navier-Stokes flow:

$$-\mu \Delta \vec{u} + \rho (\vec{u} \cdot \nabla) \vec{u} + \nabla p = 0$$
$$\nabla \cdot \vec{u} = 0$$

$$\vec{u} = 0$$
 on Γ
 $P_{in} = P_{out} + const$

 \vec{u} : velocity

p: pressure

 μ : dynamic viscosity

 ρ : fluid density

(momentum balance)
(mass conservation)

(no-slip on surface)
(pressure drop is given)

Efficiency of Clean Filter Media: Method

- 1. Filter media model
- 2. Determine flow field
- 3. Track particles (filtered or not?)
- 4. Result: percentage of filtered particles of each size

Cabin Air Filter Fractional Efficiency (w/o Electrostatic Attraction)

Filter Life Time Simulation - Method

1. Filter Model

2. Flow Field

3. Track Particles

4. Deposit Particles

5. Recompute Flow

6. Repeat ...

Cabin Air Filter - Life Time Simulation

Initial pressure drop	7 Pa
Pressure drop after 1000s	101 Pa
Total deposited dust after 1000s	93 g/m²
Total filter efficiency	93% (weigth)

Step 2:

Create a model of the existing material

GEODICT

Creating a filter model

Why create a filter model?

- A CT scan is an image!
 - It can only be changed voxel-by-voxel.
 - It is not possible to remove a fiber
 - It is not possible to

change diameters or shape

=> We need to "understand" the image!

GeoDict Workflow

Geometric Analysis I: Media Thickness, Porosity, Pore Sizes, Fiber Diameter

Average fiber diameter: 33.6 µm

Porosity: 80.4 % Thickness: 605 µm

Geometric Analysis II: Fiber Orientation

How is fiber orientation measured?

0.5	0	0
0	0.5	0
0	0	0

0.9	0	0
0	0.05	0
0	0	0.05

Orientation tensor describes probability of direction component.

Orientation analysis – Method 1: Principal Component Analysis (PCA)

- 1. PCA subdivides domain into windows of given size
 - Automatic window size estimates about 2x fiber diameter
- 2. For each window, finds fiber fragments and analyzes direction tensor
- 3. For each block, averages direction tensors over windows in that block

Orientation analysis – Method 2: Star Length Distribution (SLD)

- For each voxel, SLD analyzes chord lengths through it for fixed set of directions
- The relative length of the chords gives per-voxel orientation tensor
- The tensors are averaged over all voxels in the block (similar to PCA)

Smit, Th H., E. Schneider, and A. Odgaard. "Star length distribution: a volume-based concept for the characterization of structural anisotropy." *Journal of microscopy* 191 (1998): 249-257.

Comparison of CT Scan and Model

Comparison of CT Scan and Model

Input parameters found by CT-Scan analysis:

- media thickness
- porosity
- fiber diameter
- in-plane anisotropy

Input parameters taken from assumptions:

- straight fibers
- fibers oriented in-plane
- homogeneous distribution
- circular cross section

Filter Life Time

Filter Life Time Simulation Comparison CT Scan vs Model

Step 3:

Modify the structure model

1. Fiber diameter

2. Fiber orientation

3. Porosity

- 4. Fiber cross sectional shape
- 5. Curved fibers instead of straight fibers
- 6. Density gradient in through-plane direction
- 7. Media thickness
- 8.

Summary and Outlook

Overall goal of this work:

get from CT-Scan to Model structure automatically

Current state:

works for straight fibers with circular cross section

Work in progress: curved fibers with circular cross section

- Determine curvature distribution from CT
- Realize given curvature distribution in a model

Thank you!

GEODICT

The Digital Material Laboratory

Standard Edition

© 2012 - 2015 Math2Market GmbH © 2001 - 2012 Fraunhofer ITWM All rights reserved.

info@math2market.de www.geodict.com

Software Design:
Dr. Jürgen Becker, Liping Cheng, PhD,
Dr. Erik Glatt, Dr. Sven Linden,
Dr. Christian Wagner, Dr. Rolf Westerteiger,
Nicolas Harttig, Andreas Grießer,
and Andreas Wiegmann, PhD

Art Design: Steffen Schwichow MATH 2 MARKET

Please visit our booth@A1112

or

Visit us @ www.geodict.com

