

AAPG – SEG International Conference and Exhibition 2017

Jens-Oliver Schwarz, Tom Cvjetkovic, Liping Cheng,

Jürgen Becker, Sven Linden, Andreas Wiegmann

MATH2MARKET GMBH COMPANY OVERVIEW

- Formation damage is a zone of reduced permeability within the vicinity of the wellbore (skin) as a result of foreignfluid invasion into the reservoir rock.
- Carbonate stimulation:
 enhancement of permeability
 in carbonates after formation
 damage by acidizing the rock;
 i.e. dissolving minerals in the
 carbonate by HCl

HCl injection Carbonate Carbonate

Initial stage

HCI injection

Dissolved stage

 Lesson learned from digital rock physics: structure at the pore scale influences rock properties at the core scale

WHY DO WE NEED A NEW NUMERICAL MODEL?

- Lesson learned from digital rock physics: structure at the pore scale influences rock properties at the core scale
- Simulations at the pore scale require REV and so large computational domains

MATH

2 MARKET

permeability Rock property,

WHY DO WE NEED A NEW NUMERICAL MODEL?

- Lesson learned from digital rock physics: structure at the pore scale influences rock properties at the core scale
- Simulations at the pore scale require REV and so large computational domains
- Need for efficient solvers and simple rules for structure manipulation

How do we model Acidizing Treatments?

- Compute fluid flow through the rock
- Simulate advective and diffusive transport of particles (H⁺ ions) through the rock
- Model interaction of the particles with the rock
 - A single particle represents multiple H⁺ ions (multiplicity)
 - Upon collision, H⁺ ions dissolve the rock (CaCO₃):

$$CaCO_3 + H^+ -> Ca^{2+} + HCO_3^-$$

 Keep track of consumed H⁺ and dissolved volume

CARBONATE SAMPLE

- Grosmont formation, Alberta, Canada
- Porosity: 21%, permeability range: 150
 mD 470 mD
- Data set is published in DRP benchmark paper (Andrae et al. 2013)

CARBONATE SAMPLE

Porosity of subdomain: 21.9 %

Computational domain 256x256x512

Homogeneous pore distribution

Material Information:

ID 00: Pore ID 01: Calcite [invis.]

CARBONATE SAMPLE

Porosity of subdomain: 21.9 %

Computational domain 256x256x512

Homogeneous pore distribution

Material Information:

DISSOLUTION PATTERN - UNIFORM DISSOLUTION

Simulation settings:

Domain: 256x256x512 voxels

Runtime: 29 h

Average velocity: 0.1 m/s

Material Information:

ID 00: Porespace [invis.]
ID 01: Dissolved Structure
ID 02: Original Structure

COMPARISON UNIFORM DISSOLUTION PATTERN

GeoDict simulation

Maheshwari et al. 2013

DISSOLUTION PATTERN – WORMHOLES

Simulation settings:

Domain: 256x256x512 voxels

Runtime: 36 h

Average velocity: 0.01 m/s

Material Information:

ID 00: Porespace [invis.]
ID 01: Dissolved Structure
ID 02: Original Structure

COMPARISON WORMHOLE PATTERN

GeoDict simulation

Maheshwari et al. 2013

DISSOLUTION PATTERN – FACE DISSOLUTION

Simulation settings:

Domain: 256x256x512 voxels

Runtime: 50 h

Average velocity: 0.001 m/s

Material Information:

ID 00: Porespace [invis.]
ID 01: Dissolved Structure
ID 02: Original Structure

COMPARISON FACE DISSOLUTION PATTERN

GeoDict simulation

Maheshwari et al. 2013

Simulation settings:

Domain: 512x512x768 vc

Runtime: 24 h

Average velocity: 0.1 m/s

Material Information:

ID 00: Porespace [ID 01: Dissolved S ID 02: Original Str

OUTLOOK

- Finalize MATLAB prototype generally applicable to reactive transport
- Compare simulations with an experimental data set
- Transfer MATLAB code into C++ and incorporate it in GeoDict to reach computational domains of 1500x1500x1500 voxels

REFERENCES

Andrae, H., Combaret, N., Dvorkin, J., Glatt, E., Junehee, H., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, A., "Digital rock physics benchmarks Part I: Imaging and segmentation", Computers & Geosciences, 43, 25-32, 2013.

Lie, K. A. and Mallison, B. T., Mathematical models for oil reservoir simulation. In *Encyclopedia of Applied and Computational Mathematics*, Springer-Verlag Berlin Heidelberg, 2015.

Maheshwari, P., Ratnakar, R.R., Kalia, N. and Balakotaiah, V., 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chemical Engineering Science, 90, 258-274, 2013.

THANK YOU FOR YOUR ATTENTION

Please come to our booth for more information about GeoDict®

Dr. Jens-Oliver SchwarzSenior Applications Specialist

Booth #224

jens-oliver.schwarz@math2market.de

+49 631 / 205 605 – 21

www.math2market.de