

The Prediction of Mechanical Properties of Composites and Porous Materials Based on Micro-CT-Scans and 3D Material Models

C. Bauer, E. Glatt, A. Wiegmann Math2Market GmbH

Content

- Company Overview
- What is the Digital Material Laboratory GeoDict?
- Characterization of a Short Glass Fiber Reinforced Plastic

Math2Market GmbH - Company Overview

Math2Market GmbH Company – Location and Contact

Offices and visitor address:

Stiftsplatz 5 67655 Kaiserslautern

Germany

Phone + 49 631 / 205 605 0 Fax + 49 631 / 205 605 99

www.geodict.com

Math2Market GmbH Company – our Mission and Goals

Math2Market GmbH Company – Promoted Industries

What is the Digital Material Laboratory GeoDict?

GeoDict - Digital Material Laboratory

Characterization of a Short Glass Fiber Reinforced Plastic

- Material used in an engine bearer
 - produced by injection molding
 - matrix material
 - thermoplastic
 - polyamide 6
 - fiber reinforcement
 - glass fibers
 - percentage: 50 % by weight
 - length: 100 μm 500 μm
- μCT scan of the material with a resolution of 1.4 μm

- Fiber orientation in injection molded materials
 - example of molded plate

for complex geometries no analytical methods are accurate enough

- Determination of the fiber orientation using FiberGuess
 - dividing the RVE into user defined blocks
 - PCA: principal component analysis
 - subdivides the domain into windows to eliminate the influence of fiber crossings
 - identifies single fiber fragments and analyzes the direction
 - SLD: star length distribution
 - working on voxel basis
 - analyzes the chord length through the voxel
 - averaging the defined blocks to determine the average orientation tensor

- Visualization for each block
 - main fiber orientation
 - degree of orientation
 - solid volume fraction

Results for each block

$$\overline{A_{PCA}} = \begin{bmatrix} 0.545 & -0.034 & 0.023 \\ sym & 0.190 & 0.020 \\ sym & sym & 0.265 \end{bmatrix} \quad \overline{A_{SLD}} = \begin{bmatrix} 0.640 & -0.042 & 0.106 \\ sym & 0.109 & 0.019 \\ sym & sym & 0.251 \end{bmatrix}$$

- Calculation of other geometric characteristics
 - fiber diameter distribution
 - fiber curviness

- Input for the mechanical simulation using ElastoDict-VOX
 - model of the microstructure
 - imported and segmented µCT scan
 - generated model (FiberGeo, WeaveGeo, ...)
 - material properties of the single constituents
 - from datasheet
 - from measurement

- Input for the mechanical simulation using ElastoDict
 - model of the microstructure
 - imported and segmented µCT scan
 - generated model (FiberGeo, WeaveGeo, ...)
 - material properties of the single constituents
 - from datasheet
 - from measurement

```
E_{fiber} = 72 \text{ GPa}
\nu_{fiber} = 0.22
E_{matrix} = 3.3 \text{ GPa}
\nu_{matrix} = 0.39
```


- Linear elastic properties of the homogenized material
 - applying small strain/stress increment
 - periodic boundary conditions
 - simulation of six load cases
 - three uniaxial experiments: XX, YY, ZZ
 - three shear experiments: XY, YZ, XZ
 - obtaining the general anisotropic Hooke's Law to calculate the elasticity tensor

$$\sigma_{ij} = \sum_{r,s=1}^{3} c_{ijrs} \, \epsilon_{rs}$$
, $i,j \in \{1,2,3\}$

- Visualization of the results
 - displacement
 - stress
 - strain
- Homogenized material properties
 - anisotropic elasticity tensor
 - approximation of the engineering constants
 - orthotropic
 - isotropic
 - thermal expansion properties

- Visualization of the results
 - e.g. von Mises stress

- Homogenized material properties
 - elasticity tensor
 - engineering constants

—— Anisotropic Elasticity Tensor ——

Stiffness Formulation for Strain Equivalence [GPa]

10.016	5.3594	5.4999	0.045512	-0.094108	0.12392
5.3596	10.716	5.7295	0.51863	-0.093485	0.082552
5.4998	5.7296	15.377	1.1905	-0.60699	-0.20454
0.045524	0.51862	1.1905	3.4158	-0.34325	-0.21146
-0.094059	-0.09342	-0.60689	-0.34327	3.0735	0.083305
0.12388	0.08248	-0.20462	-0.21149	0.08328	2.6627

Orthotropic Approximation

	Strain Equivalence	Energy Equivalence	Mean Value
Young's Modulus E ₁ [GPa]	6.7722	6.7725	6.7724 +- 0.0001
Young's Modulus E ₂ [GPa]	7.2198	7.2201	7.2200 +- 0.0002
Young's Modulus E ₃ [GPa]	11.3678	11.3680	11.3679 +- 0.0001
Poisson Ratio V ₁₂	0.3858	0.3857	0.3858 +- 0.0000
Poisson Ratio V ₁₃	0.2139	0.2139	0.2139 +- 0.0000
Poisson Ratio V 23	0.2255	0.2255	0.2255 +- 0.0000
Poisson Ratio V ₂₁	0.4112	0.4112	0.4112 +- 0.0000
Poisson Ratio V ₃₁	0.3591	0.3591	0.3591 +- 0.0000
Poisson Ratio V 32	0.3551	0.3551	0.3551 +- 0.0000
Shear Modulus G ₁₂ [GPa]	2.6627	2.6625	2.6626 +- 0.0001
Shear Modulus G ₁₃ [GPa]	3.0735	3.0733	3.0734 +- 0.0001
Shear Modulus G ₂₃ [GPa]	3.4158	3.4156	3.4157 +- 0.0001

Homogenized material properties

- Homogenized material properties
 - defining the expansion coefficient of the single constituents
 - calculating the macroscopic expansion properties

Thermal Stress Tensor GPa/K

-0.001047	4.82e-07	9.271e-07	
4.82e-07	-0.001058	6.252e-07	
9.271e-07	6.252e-07	-0.001056	

- Parameter studies based on modelled microstructures
 - short fiber structures with different fiber volume fractions
 - constant fiber length: 200 μm
 - constant fiber diameter: 9.2 μm
 (average diameter from the imported μCT structure)
 - definition of the fiber orientation tensor

$$\overline{A_{fiber}} = \begin{bmatrix} 0.8 & 0 & 0\\ sym & 0.1 & 0\\ sym & sym & 0.1 \end{bmatrix}$$

automated study using the Python-Interface GeoPython

Influence of the fiber volume fraction on the Young's modulus

- Simulation of matrix damage using ElastoDict-LD
 - nonlinear material models available, e.g.:
 - Neo-Hookean
 - Mooney-Rivlin
 - plastic deformation
 - user defined materials (UMAT interface)
 - nonlinear geometry option
 - different loading types
 - uniaxial/shear
 - complex (free definition of the deformation gradient)
 - free or confined boundary conditions

- Simulation of matrix damage using ElastoDict-LD
 - visualization of UMAT-state variables (e.g. damage)

- Simulation of matrix damage using ElastoDict-LD
 - macroscopic stress strain curve

Conclusion

- Micromechanical model
 - import your µCT scan and segment the single constituents
 - generate your microstructure using FiberGeo, FoamGeo, ...
- Geometric analysis
 - Fiber orientation analysis
 - Fiber diameter and curvature distribution
- Mechanical simulation
 - elasticity tensor of the homogenized material
 - thermal stress tensor
 - nonlinear material properties

Thank you!

