Modeling and simulation of a pressure filtration process based on VDI guideline 2762

FILTECH, The Filtration Event 2018, March 13 – 15, Cologne, Germany

Dr.-Ing. Mehdi Azimian

Dr. Andreas Wiegmann

Math2Market GmbH, Kaiserslautern, Germany

Content

Math2Market GmbH overview

© Math2Market GmbH

GeoDict (The Digital Material Laboratory)

Filtration

Mostly automotive, filter media & filters for water, sludge, oil, air and fuel

Fuel cell media & battery materials, catalyst materials

Composites

CFRP, GFRP, mostly automotive, lightweight materials

Oil and Gas

Digital rock physics, digital sand control

GeoDict workflow

IMPORT

Diverse ways to import material models

Model

Detailed material models created in 3D

ANALYZE

Extensive analysis and evaluation of structural material properties

PREDICT

In-depth analysis and prediction of material behavior

EXPORT

GeoDict models made available for standard workflows

Part I Simulation on the <u>resolved</u> filter scale

Particulate flow simulations

Comparison of different collision models (Implemented in Filter Dict)

H = 1e-19Restitution Coefficient = 0.5

Caught-on-first-touch

Hamaker

Sieving

Caught-on-first-touch collision model (air filtration) & Sieving collision model (water/oil filtration)

higher permeability, "dendrites"

lower permeability, "dense packing"

© Math2Market GmbH

Depth filtration & cake filtration (Sieving collision model)

pass Simulations, Chemical Engineering & Technology, 2018.

Simulation on the <u>resolved</u> media (micro-structure of filter media obtained by µ-CT scan)

Filter capacity & pressure-drop through the life time

Part II Simulation on the <u>unresolved</u> filter media

Determination of the filtration behavior based on VDI-Guideline 2762

Laboratory test (pressure filtration)

- Constant pressure difference
- Recording of the filtrate amount as f(t)
- Cake evaluation (Height, moist cake weight, ...)
- Analysis of gas permeation point (filtration end)
- Evaluation using the Darcy equation

Darcy equation:
$$v = \frac{V}{A_0} = \frac{\Delta}{\mu_V(\alpha)}$$

 α [m⁻²]: Specific cake resistance

 β [m⁻¹]: Filter media (initial) resistance

h_c [m]: Filter cake height

Filtration process steps

Filtering

Pressure/vacuum to force liquid through the solid bed & filter media → specific cake resistance

Washing

Fresh wash liquid is sprayed on top of the solid cake taking care not to disturb the cake surface

$$Wash \ ratio \ (R_w) = \frac{Volume \ of \ wash \ liquid}{Cake \ volume}$$

Drying

Pressurized gas is blown down through the filter cake

Modeling and simulation on the <u>unresolved</u> media (Filter cake formation based on VDI guideline 2762)

Particles:

Spherical glass beads with density 2450 kg/m³

Particle size distribution: 14–100 µm

Porous media plate with permeability 1.45e-10 m²

Flow resistivity: 1.22e+08 kg/(m³s)

Permeability: 8.12e-12 m²

Specific cake resistance: 1.23e+11 m⁻²

© Math2Market GmbH

16

> Washing process

Washing process of the filter cake (Simulation with SatuDict)

Pore Morphology Method predicts the distribution of the two phases inside porous media ter): 70°

© Math2Market GmbH

Brine & water volume% before & after the washing process

Material Information:

■ID 00: Brine [Wetting Phase]

■ID 14: Glass

ID 15: Pore [Closed Pores]

Brine: 39.49%

Glass particles: 60.51%

ID 00: Brine [Wetting Phase]

ID 01: Water [Non-Wetting Phase]

ID 14: Glass

ID 15: Pore [Closed Pores]

Water: 39.25% Brine: 0.24%

Glass particles: 60.51%

Phase saturation/fraction as a function of capillary pressure (Washing process)

Brine & water phase saturation as a function of pressure

Water phase fraction in outlet plane of the filter cake

➤ By measuring the refractive index at the outlet, the optimal amount of washing liquid can be chosen.

(Save in washing liquid amount & washing duration)

Refractive index (n):

Brine (20 wt% NaCl): 1.3684

Water: 1.333

Drying process

Drying process (with pressurized air) of the filter cake (Simulation with SatuDict)

Phase saturation/fraction as a function of capillary pressure (Drying process)

Water & air phase saturation as a function of pressure

Air phase fraction in outlet plane of the filter cake

➤ Pressure required for drying process (1.1 bar) is more than two times higher than pressure required for washing process (0.48 bar)

SatuDict functionality

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- Leading Choose radii r_{min} , r_{max} and initial radius $r=r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- Leading Choose radii r_{min} , r_{max} and initial radius $r=r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

- 1. Choose radii r_{min} , r_{max} and initial radius $r = r_{max}$
- 2. Move in spheres with radius r from the NWP-reservoir through large-pore-connected mobile NWP
- Mark mobile WP that is not connected to WP-reservoir as residual WP
- 4. If $r > r_{min}$ then decrease r and goto step 2

Conclusions

- Simulation of filtration behavior based on VDI-Guideline 2762
- > Filtration on the resolved & unresolved media were simulated
- ➤ Besides filter cake formation, the washing & drying steps were successfully simulated using GeoDict
- ightharpoonup Permeability of filter cake & the specific cake resistance (lpha) were computed
- > Optimal pressure for washing & drying processes were predicted
- > Outlook: Optimization in wash liquid amount and washing/drying process time

Thank you for your attention.

Visit us in Hall No: 11.1, at Stand No: A11

