Soot Filtration Modeling and Simulation in Diesel Particulate Filters

<u>Jürgen Becker,</u> Mehdi Azimian Liping Cheng, Andreas Grießer Andreas Wiegmann

Math2Market GmbH, Kaiserslautern, Germany

Math2Market GmbH and its GeoDict software Some background information

- Math2Market creates & markets software to analyze/design porous & composite materials based on the material's geometric inhomogeneity
- M2Ms software is called GeoDict, the Digital Material Laboratory
- GeoDict works on µCT-based, FIB-SEM-based and intrinsic models
 in all cases, the computer representation consists of 3-D images
- M2M was spun off in 2011 from Fraunhofer Institute for Industrial Mathematics
- M2M is based in Kaiserslautern, Germany, and privately owned
- M2M has more than 150 clients from around the world

GeoDict The Digital Material Laboratory

GeoDict's Core Capabilities

Import µCT & FIB-SEM

Analyze Materials

Optimize Materials

Model Materials

Analyze Properties

Export Materials

Selected Clients

FREUDENBERG

HUYCK.WANGNER

AGEN INNOVATING TOGETHER

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Modeling & Simulation of Soot Filtration

The Diesel Particulate Filter (DPF)

Description:

- Ceramic honeycomb with porous walls
- Channels alternately plugged at the ends
- Trap the particles over the whole size range

- Lower pressure drop
- Higher filter efficiency
- Longer life time

Key element governing the performance of the DPF: **Ceramic filter media**

Diesel Particulate Filter Simulations

Energy use of the DPF:

- 1. Pressure loss across the (loaded) ceramic walls
- 2. Pressure loss along the channels

Step 1: Simulate pressure loss & solid loading across the wall.

Step 2: Simulate pressure loss & solid loading along the channels.

Step 1: Simulate pressure loss across the ceramic wall

3D Ceramic Microstructure

Image acquisition by µCT

Modelled with GrainGeo

- (+) Allows simulations on real filter structures.
- (-) Modifications of the filter structure are not possible.

Binarized SEM Images from Polished Micrograph Sections and Modeled Sintered Ceramics

Measured Porosities and Permeabilities of Real Ceramics vs Modeled Porosities and Simulated Permeabilities on Modeled Ceramics

Filter Clogging Simulation with FilterDict-Media

Simulation of Unresolved Particles Solid, Empty, or Porous (& Permeable) Grid Cells

- Soot particles (25~600 nm) are smaller than the grid size.
- Deposited particles do not fill the computational cell, but form a permeable media
- Define how much a cell can get filled: f_{max}
- Define flow resistivity depending on the degree of filling: $\sigma(f)$

Parameter Identification Estimate Packing Density and Flow Resistivity

Soot deposited in <u>ceramic DPF</u>

model soot as porous media requires:

 f_{max} maximum soot packing density σ_{max} corresponding flow resistivity

Soot deposited on a grid frame

 high resolution simulation to identify:

 $f_{max} \& \sigma_{max}$ for cake filtration

Soot deposited on a single grain

 high resolution simulation to approximate:

 $f_{max} \& \sigma_{max}$ for depth filtration

Experimental and Simulated Pressure Drop Evolution

- Error bars induced by5 measurements and5 different realizationsof the digital structure.
- Match achieved by introducing different parameters $f_{max} \& \sigma(f)$ for depth & cake filtration.

L. Cheng et al., WFC 11, 2012.

Spatial Particle Deposition over Time

Reduced Pressure Drop by Use of an Innovative Coating

After fast initial pressure drop increase (slope s_1 , depth filtration phase) follows long slower pressure drop increase (slope s_2 , cake filtration phase)

- Matched experiment with simulations
- Shortened depth phase to lower pressure drop during cake phase
- Fraunhofer IKTS manufactured ceramic, experiment matched simulations, and patent was granted: *Particulate filter, No. DE102012220181 A1*

Step 2 Simulate pressure loss along the channels

Designing Honeycombs with GridGeo

- Triangular or square channels
- Channels alternately plugged at the ends

Thicknesses of wall and plugs

Pressure Drop along the Channels

Required input from step 1:

Permeability of ceramic walls

Soot Deposition along the Channels

Required input from step 1:

Permeability of ceramic walls

Filtration properties of ceramic walls

Simulation of the Clogging Process of a Honeycomb Filter

Summary

- 1. Simulate pressure loss across the ceramic wall.
 - Model ceramic materials.
 - Determine pressure drop evolution and soot loading.
- 2. Simulate pressure loss along the channels
 - Model honeycomb structures.
 - Determine pressure drop evolution and soot loading
- Multi-scale simulations bridge the scales between filter material design and filter design.
- Developed an improved DPF with Fraunhofer IKTS (patent granted).

Thank you for your attention.

