

COMPUTER-AIDED MODELING, SIMULATION AND OPTIMIZATION OF FILTER MEDIA

European Conference on Fluid-Particle Separation (FPS 2018), October 15 – 17, Lyon, France

Dr.-Ing. Mehdi Azimian, Christopher Kühnle, Dr. Andreas Wiegmann

INTRODUCTION

GEODICT

SIMULATION OF FILTRATION AT DIFFERENT SCALES

GEODICT

Filter media (micro scale)

SIMULATION ON THE MICRO-STRUCTURE OF THE FILTER MEDIA

MODELING OF THREE VARIOUS FILTER MEDIA **STRUCTURES**

STRUCTURAL COMPARISON OF THE THREE VARIOUS FILTER MEDIA

STRUCTURE	Homogeneous	LINEAR	Exponential
Size [µm]	600x600x1600	600x600x1600	600x600x1600
Distribution of coarse fiber / fine fiber	Uniform / Uniform	Uniform / 1,2,3,4,5,6,7,8,9,10,11	Uniform / 1,2,4,8,16,32
Permeability [m ²]	5.47E-11	5.48E-11	5.53E-11
$oldsymbol{eta_{22\mu m}}$	200	200	200
Object solid volume percent in domain [%] (porosity [%])	6.11 (93.89)	5.9 (94.1)	5.43 (94.57)
Volume coarse fiber / Volume fine fiber	60/40	60/40	60/40

PARTICULATE OIL FLOW PARAMETERS

GEODICT

Fluid: Oil

Temperature: 20 °C

Particles: ISO Fine A2 test dust

Particle Density: 2560 kg/m³

Particle Collision Model: Sieving

Solver: LIR (Adaptive grids based)

Flow regime: Laminar

Multi-pass filter test schematic based on ISO 4548-12

ANIMATION OF THE TRANSIENT FILTRATION SIMULATION (LINEAR STRUCTURE)

COMPARISON AMONG THE THREE STRUCTURES

MULTIPASS SIMULATION RESULTS: PRESSURE-DROP OVER TIME

GEODICT

The exponentially increasing media shows the lowest pressure-drop increase through the life-time simulations.

MULTIPASS SIMULATION RESULTS: PRESSURE-DROP OVER TOTAL DEPOSITED DUST

GEODICT

The exponentially increasing media shows the lowest pressure-drop increase & the highest DHC through the life-time simulations.

SAVE IN MATERIAL

GEODICT

STRUCTURE	Homogeneous	Linear	Exponential
Size [µm]	600x600x1600	600x600x1600	600x600x1600
Distribution of coarse fiber / fine fiber	Uniform / Uniform	Uniform / 1,2,3,4,5,6,7,8,9,10,11	Uniform / 1,2,4,8,16,32
Permeability [m²]	5.47E-11	5.48E-11	5.53E-11
$oldsymbol{eta_{22\mu m}}$	200	200	200
Object solid volume percent in domain [%] (porosity [%])	6.11 (93.89)	5.9 (94.1)	5.43 (94.57)
Volume coarse fiber / Volume fine fiber	60/40	60/40	60/40

M. Azimian, C. Kühnle, A. Wiegmann, Design and optimization of fibrous filter media using life-time multipass simulations, Chemical Engineering & Technology, 2018, 41, No. 5, 1–9. doi.org/10.1002/ceat.201700585

GEODICT

Pleated filter (macro/meso scale)

GEOMETRIC MODEL OF THE PLEATED FILTER GENERATED WITH PLEATGEO

MAIN INPUT PARAMETERS FOR THE MACRO-SCALE SIMULATION

GEODICT

Goal is to model, simulate & optimize pleated filters and to analyze the filtration characteristics such as pressure drop & dust holding capacity.

(Reduction in experiments costs & save time)

Main input parameters for the <u>macro-scale</u> simulation, which are related to the <u>micro-structure</u> of the media, are:

- Permeability of the media
- Max. particle packing density and max. flow resistivity of depth filtration regime ($f_{max} \otimes \sigma_{max}$ for depth filtration)
- Max. particle packing density and max. flow resistivity of cake filtration regime ($f_{max} \otimes \sigma_{max}$ for cake filtration)
- Fractional filtration efficiencies (filtration efficiency for each particle size class)

Single pleated filter

IDENTIFICATION OF PARAMETERS

 σ_{max} : corresponding flow resistivity

GEODICT

Estimate max. particles packing density & max. flow resistivity

Particles deposited through the micro-structure high resolution simulation to approximate: $f_{max} \& \sigma_{max}$ for depth filtration

SIMULATION OF THE PLEATED FILTER CLOGGING

CONCLUSIONS

- ✓ The micro-structure of filter media can be modeled using GeoDict structure-generators or by importing µCT-scans &/or FIB-SEM images.
- ✓ By modification of the micro-structure of filter media, the macroscopic properties can be optimized.
- ✓ The gradient distribution of fibers through the media thickness, can improve the filtration characteristics.
- ✓ The exponential media shows the lowest pressure-drop increase & the highest DHC through the life-time simulations.
- ✓ Pleated filter can be modeled using PleatGeo module of GeoDict.
- ✓ Main input parameters for the macro-scale simulation, can be obtained from the simulation of the media micro-structure. (save in experimental tests)

THANK YOU FOR YOUR ATTENTION. VISIT ME AT MATH2MARKET BOOTH

