

FOR FILTER MEDIA DESIGN

FILTREX™ Asia 2018

04 DEC 2018 - 05 DEC 2018 , SHANGHAI, CHINA

Christopher Kühnle, Dr. Mehdi Azimian, <u>Dr. Liping Cheng</u>, Dr. Andreas Wiegmann

GEODICT FOR FILTRATION: GAS FILTRATION PORTFOLIO

Filter Media	Clean Filter Parameters	Gas Filtration Experiments	Gas Filtration Results
 Nonwoven fabrics Woven fabrics Foams Sintered ceramics Pleats and support meshes 	 Media thickness Fiber diameters Fiber orientation Grammage Pore size distribution Bubble point Percolation path 	 Single pass tests Diesel soot test dust Standard aerosol test dusts 	 Initial pressure drop Pressure drop evolution Initial filter efficiency Fractional efficiencies Filter capacity Filter class Most penetrating particle size

GEODICT FOR FILTRATION: LIQUID FILTRATION PORTFOLIO

	Filter Media	Clean Filter Parameters	Liquid Filtration Experiments	Li	quid Filtration Results
-	Nonwoven fabrics	Media thickness	Multi pass tests		Initial pressure drop
	Woven fabrics	Fiber diameters	Standard test dusts		Pressure drop evolution
	Foams	Fiber orientation			Initial filter efficiency
	Membranes	Grammage			Fractional efficiencies
	Metal wire meshes	Pore size distribution			Filter capacity
	Pleats & support meshes	Bubble point			Filter class
		Percolation path			Filter clogging behavior

SIMULATE FILTRATION AT DIFFERENT SCALES

DIGITAL MATERIAL DESIGN

μ CT-SCAN OF CABIN AIR FILTER SAMPLE

FILTER LIFE TIME SIMULATION

Initial pressure drop	7 Pa
Pressure drop after 1000s	101 Pa
Total deposited dust after 1000s	93 g/m²
Total filter efficiency	93% (weight)

SIMULATE ON μ CT SCANS

- (+) Allows simulations on real filter structures
- (-) Modifications of the filter structure are not possible

Aim: create a model that mimics the tomography first (Digital Twin), then modify it to find structures with even better properties!

CREATE 3D STRUCTURE MODELS

Input parameters needed (straight fibers):

- Porosity
- Fiber type: cross sectional shape, diameter, length
- Fiber orientation tensor
- Thickness (height) of the filter media

Parameters might be

- known from manufacturing process
- measured experimentally
- measured from CT image

FILTER LIFE-TIME SIMULATIONS

FILTER CAPACITY AND LIFE TIME

FILTER MEDIA DESIGN

In this presentation we want to optimize the DHC while keeping initial pressure drop and clean filter efficiency the same

MODELING OF COARSE/FINE MIXED MEDIA FILTER

Thick fibers (blue):

Diameter: 20 µm

Orientation: Anisotropic 8/1

Material: Glass Vol. ratio: 60%

Thin fibers (Yellow):

Diameter: 4 µm

Orientation: Anisotropic 8/1

Material: Glass Vol. ratio: 40%

$$\beta_d = \frac{n_{\geq d, Upstream}}{n_{\geq d, Downstream}}$$

MODELING OF THREE FILTER MEDIA STRUCTURES

Homogeneous

Linear

Exponential

MODELING OF THREE FILTER MEDIA STRUCTURES

Flow direction

STRUCTURAL COMPARISON

Structure	Homogeneous	Linear	Exponential
Size [μm]	600x600x1600	600x600x1600	600x600x1600
Distribution of coarse fiber / fine fiber	Uniform / Uniform	Uniform / Linear(1,2,3,4,5,6,)	Uniform / Exponential(1,2,4,8,16,)
Permeability [m²]	5.47E-11	5.48E-11	5.53E-11
$oldsymbol{eta_{22\mu m}}$	200	200	200
Object solid volume percentage in domain (porosity in %)	6.11 (93.89 %)	5.9 (94.1 %)	5.43 (94.57 %)
Volume coarse fiber / Volume fine fiber	60/40	60/40	60/40

EXPERIMENTAL SETUP

Used Fluid: Oil

Temperature: 20 °C

Used Particles: ISO Fine A2 test dust

Particle Density: 2560 kg/m³

Particle Collision Model: Sieving

Flow regime: Laminar

Multi-pass filter test schematic based on ISO 4548-12

TRANSIENT FILTRATION SIMULATION (HOMOGENEOUS STRUCTURE)

TRANSIENT FILTRATION SIMULATION (HOMOGENEOUS STRUCTURE)

ANIMATION OF THE FILTRATION SIMULATION (LINEAR STRUCTURE)

COMPARISON OF PARTICLE DEPOSITIONS

Homogeneous

Linear

Exponential

MULTIPASS SIMULATION RESULTS: PRESSURE-DROP OVER TIME

> The exponentially increasing media shows the lowest pressure-drop increase through the life-time simulations.

CONCLUSIONS

- ✓ The simulations of filter and filtration can be done in different scales.
- ✓ By modification of the micro-structure of filter media, the macroscopic properties can be optimized.
- ✓ The gradient distribution of fibers through the medium thickness, can improve the filtration characteristics.
- ✓ The exponential media shows the lowest pressure-drop increase & the highest DHC through the life-time simulations.
- ✓ The computer simulation helps to find the best performed filter media without being physically produced.

Thank you for your attention. **GEODICT**

