
Interpore 2018, New Orleans, May 14-17, 2018

© Math2Market GmbH

Filter media design for Dust Holding 
Capacity by computer simulations

Christopher Kühnle, Mehdi Azimian, Liping Cheng, 
Sven Linden, Andreas Wiegmann



MATH2MARKET OVERVIEW

© Math2Market GmbH-- 2 --

35+ 150+



Location and Contact

© Math2Market GmbH-- 3 --

Kaiserslautern

Offices and visitor address
Richard-Wagner-Str. 1
67655 Kaiserslautern, Germany

Phone + 49 631 / 205 605 0
Fax      + 49 631 / 205 605 99

WWW.GEODICT.COM



GeoDict for Filtration:
Liquid Filtration Portfolio

Filter Media Clean Filter
Parameters

Liquid Filtration
Experiments Liquid Filtration Results

 Nonwoven fabrics

 Woven fabrics

 Foams

 Membranes

 Metal wire meshes

 Pleats & support meshes

 Media thickness

 Fiber diameters

 Fiber orientation

 Grammage

 Pore size distribution

 Bubble point

 Percolation path

 Multi pass tests

 Standard test dusts

 Initial pressure drop

 Pressure drop evolution

 Initial filter efficiency

 Fractional efficiencies

 Filter capacity

 Filter class

 Filter clogging behavior



 Dust holding capacity (DHC), pressure drop, and 
filter efficiency describe the performance of a filter

 They influence each other and it is hard to
improve all of them at the same time

 These parameters depend mainly on the
porous microstructure 
(e.g. pore size distribution)

 In this presentation we want to optimize the DHC 
while keeping initial pressure drop and clean filter efficiency the same
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Simulate filtration at different scales

Pleat

Flat sheet 



Filter life-time simulations

4. Deposit particles 5. Flow field 6. Repeat ...

1. Filter model 2. Flow field 3. Track particles






Exponential
Linear
Homogeneous

Thin glass
fibers

Modeling of coarse/fine mixed media filter 

Same β ratio

Same inital
pressure-drop

Three
various

structures

Thick fibers (blue):
Diameter:  20 µm
Orientation: Anisotropic 8/1
Material: Glass
Vol. ratio:    60%

Thin fibers (Yellow):
Diameter:    4 µm
Orientation: Anisotropic 8/1
Material: Glass
Vol. ratio:    40%
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Modeling of three filter media structures

Homogeneous Linear Exponential



Homogeneous medium

Domain

600x600x1600 µm

Coarse fibers: Homogeneous

Fine fibers: Homogeneous

Flow direction



Linear medium

Coarse fibers: Homogeneous
Fine fibers: 1,2,3,4,5,6,7,8,9,10,11

Domain

600x600x1600 µm

Flow direction



Coarse fibers: Homogeneous
Fine fibers: 1,2,4,8,16,32

Exponential medium

Domain

600x600x1600 µm

Flow direction



Structural comparison

Structure Homogeneous Linear Exponential

Size [µm] 600x600x1600 600x600x1600 600x600x1600

Distribution of

coarse fiber / fine fiber

Uniform /

Uniform

Uniform /

Linear(1,2,3,4,5,6,……)

Uniform /

Exponential(1,2,4,8,16,……)

Permeability [m2] 5.47E-11 5.48E-11 5.53E-11

𝜷𝜷𝟐𝟐𝟐𝟐µ𝒎𝒎 200 200 200

Object solid volume 
percentage in domain

(porosity in %)

6.11

(93.89 %)

5.9

(94.1 %)

5.43

(94.57 %)

Volume coarse fiber / Volume 
fine fiber 60/40 60/40 60/40



Multi-pass filter test schematic based on
ISO 4548-12 

Experimental setup

Used Fluid: Oil

Temperature: 20 °C

Used Particles: ISO Fine A2 test dust

Particle Density: 2560 kg/m³

Particle Collision Model: Sieving

Flow regime: Laminar

Iso Fine A2 Test Dust Concentration



Transient filtration simulation
(Homogeneous structure)

45 min 2 hr 25 min 3 hr 10 min 



Transient filtration simulation 
(Homogeneous structure)

45 min 2 hr 25 min 3 hr 10 min 



Animation of the filtration simulation
(Linear structure)






Comparison of particle depositions

Homogeneous Linear Exponential



Multipass simulation results:
Pressure-drop over time
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 The exponentially increasing media shows the lowest pressure-drop increase through the life-time simulations.
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Multipass simulation results:
Pressure-drop over total deposited dust

 The exponentially increasing media shows the lowest pressure-drop increase & the highest DHC through the life-time 
simulations.



Conclusions
 The simulations of filter and filtration can be done in 

different scales. 

 By modification of the micro-structure of filter media, the 
macroscopic properties can be optimized.

 The gradient distribution of fibers through the media 
thickness, can improve the filtration characteristics.

 The exponential media shows the lowest pressure-drop 
increase & the highest DHC through the life-time 
simulations.

 The computer simulation helps to find the best performed 
filter media without being physically produced.



Thank you for your attention.
Visit us at our Booth #8 in Hall I-1
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