Optimization of filter media structures with GeoDict

FILTECH, The Filtration Event 2018, March 13 - 15, Cologne, Germany

Christopher Kühnle

Mehdi Azimian

Andreas Wiegmann

Math2Market GmbH, Kaiserslautern, Germany

Math2Market GmbH overview

GeoDict The Digital Material Laboratory

Filtration

Mostly automotive, filter media & filters for water, sludge, oil, air and fuel

Fuel cell media & battery materials, catalyst materials

Composites

CFRP, GFRP, mostly automotive, lightweight materials

Oil and Gas

Digital rock physics, digital sand control

GeoDict introduction

With GeoDict you can...

Import µCT & FIB-SEM

Model Materials

Modeling, simulation & optimization of micro-structure of filter media

Simulate filtration at different scales

Modeling of three different types of filter media structures

Linear

Exponential

Modeling of three different types of filter media structures

Thick fibers (blue):

Diameter: 20 µm

Orientation: Anisotropic 8/1

Material: Glass Vol. ratio: 60%

Thin fibers (Yellow):

Diameter: 4 µm

Orientation: Anisotropic 8/1

Material: Glass Vol. ratio: 40%

$$\beta_d = \frac{n_{d,U}}{n_{d,D}} = \frac{100}{100 - e}$$

Anisotropic Orientation: The material is compressed in the Z-direction & the fibers are isotropic in the XY-plane (Z-slice). The higher the value of the first component of Anisotropy, the stronger is the anisotropy.

Homogeneous media

Domain 600x600x1600 μm

Linear media

Domain 600x600x1600 μm

Exponential media

Flow direction

Domain 600x600x1600 μm

Structural comparison of the three filter media types

Structure	Homogeneous	Linear	Exponential
Size [µm]	600x600x1600	600x600x1600	600x600x1600
Distribution of coarse fiber / fine fiber	Uniform / Uniform	Uniform / 1,2,3,4,5,6,7,8,9,10,11	Uniform / 1,2,4,8,16,32
Permeability [m²]	5.47E-11	5.48E-11	5.53E-11
$oldsymbol{eta_{22\mu m}}$	200	200	200
Object solid volume percentage in domain (porosity in %)	6.11 (93.89 %)	5.9 (94.1 %)	5.43 (94.57 %)
Volume coarse fiber / Volume fine fiber	60/40	60/40	60/40

Particulate oil flow parameters

Used Fluid: Oil

Temperature: 20 °C

Used Particles: ISO Fine A2 test dust

Particle Density: 2560 kg/m³

Particle Collision Model: Sieving

Solver: LIR (Adaptive grids based)

Flow regime: Laminar

Multi-pass filter test schematic based on ISO 4548-12

Transient filtration simulation (Homogeneous media)

Transient filtration simulation (Homogeneous media)

Animation of the transient filtration simulation (Linear media)

16

Comparison of the three media types

17

Multipass simulation results: Pressure-drop over time

> The exponentially increasing media shows the lowest pressure-drop increase through the life-time simulations.

Multipass simulation results: Pressure-drop over total deposited dust

Structure	Homogeneous	Linear	Exponential
Size [µm]	600x600x1600	600x600x1600	600x600x1600
Distribution of coarse fiber / fine fiber	Uniform / Uniform	Uniform / 1,2,3,4,5,6,7,8,9,10,11	Uniform / 1,2,4,8,16,32
Permeability [m²]	5.47E-11	5.48E-11	5.53E-11
$oldsymbol{eta_{22\mu m}}$	200	200	200
Object solid volume percentage in domain (porosity in %)	6.11 (93.89 %)	5.9 (94.1 %)	5.43 (94.57 %)
Volume coarse fiber / Volume fine fiber	60/40	60/40	60/40

© Math2Market GmbH

Selection of a representative computational domain

Sub-cakes can form, if there is a gap between high and low solid volume fraction. Such sub-cakes will lead to a lower DHC.

Conclusions

- ✓ The macroscopic properties can be optimized by modification of the micro-structure of filter media.
- Computational domain has to be large enough to be representative.
- ✓ The gradient distribution of fibers through the media thickness, can improve the filtration characteristics.
- ✓ The exponential media shows the lowest pressure-drop increase
 & the highest DHC through the life-time simulations.
- ✓ Results are published recently:

 M. Azimian, C. Kühnle, A. Wiegmann, Design and optimization of fibrous filter media using life-time multi-pass simulations, Chemical Engineering & Technology, 2018.

Thank you for your attention.

Visit us in Hall No: 11.1, at Stand No: A11

