

MSE Congress 2018, Darmstadt, 27.09.2018 Aaron Widera, Constantin Bauer

Andreas Wiegmann, Erik Glatt, Andreas Griesser (Math2Market GmbH)

Matthias Kabel (Fraunhofer ITWM)

Tim Schmidt, Florian Schimmer (IVW GmbH)

OUTLINE

GEODICT

01 What is GeoDict?

O2 Digital Twin of a Short Fiber Reinforced Polymer

Other Examples of Digital Twins

THE WORKFLOW FOR DIGITAL MATERIAL DESIGN WITH GEODICT®

GEODICT

IMPORT

ANALYZE

>>>

Model >>

DESIGN

>>>

NEXT GENERATION

MATERIAL

The idea is the beginning.

Design a material from scratch or import images from an existing material to create a digital model. Discover the geometric properties and compute the physical properties of the material.

This is the start of creating a Digital Twin.

A Digital Twin is the statistical representation of the material in the digital world.

Here begins the design process.

Digital prototypes are easily and rapidly created.

Simulate and evaluate in a loop to find the material with the desired properties.

The materials of the future are within reach and we help you find them faster.

DIGITAL MATERIAL

STATISTICAL MODEL

DIGITAL TWIN

DIGITAL PROTOTYPES

THIS IS INNOVATION THROUGH SIMULATION.

OUTLINE

GEODICT

01 What is GeoDict?

O2 Digital Twin of a Short Fiber Reinforced Polymer

Other Examples of Digital Twins

DIGITAL TWIN OF A SFRP

GEODICT

What material are we looking at?

- PA6GF50
 - Polyamide 6 matrix
 - short glass fiber reinforcement
 - 50 % fibers by weight
- produced by injection molding
- used in mass production for structural components (e.g. engine bearer)

DIGITAL TWIN OF A SFRP

GEODICT

- 6 Steps to the Digital Twin
 - 1. Import, process and segment the µCT-scan
 - 2. Calculate the mechanical properties directly on the µCT-scan
 - 3. Determine the geometrical properties of the material (fiber diameter, fiber orientation, fiber length)
 - 4. Model the digital twin
 - 5. Calculate the mechanical properties of the digital twin
 - 6. Comparison of the results

DIGITAL TWIN OF A SFRP IMPORT AND SEGMENTATION

GEODICT

- Import a stack of 2d images
- Image processing to improve quality for segmentation n
 - noise reduction, edge sharpening

NLM, Patch Radius: 1vx Window Radius: 3vx Strength: 0.1

NLM, Patch Radius: 1vx Window Radius: 3vx Strength: 0.2

NLM, Patch Radius: 1vx Window Radius: 3vx Strength: 0.3

NLM, Patch Radius: 1vx Window Radius: 3vx Strength: 0.4

Applying a Non-Local Means Filter for noise reduction

DIGITAL TWIN OF A SFRP IMPORT AND SEGMENTATION

automated thresholding using OTSU¹ algorithm

¹Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62–66

DIGITAL TWIN OF A SFRP IMPORT AND SEGMENTATION

automated thresholding using OTSU¹ algorithm

¹Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62–66

DIGITAL TWIN OF A SFRP MECHANICAL ANALYSIS - CT SCAN

GEODICT

- linear elastic simulation of 6 different load cases
 - 3 uniaxial experiments
 - 3 shear experiments
- used material properties
 - PA6: E=2.8 GPa / v=0.39
 - Glass: E=72 GPa / v=0.22
- computation time: 589 s
 - 4 CPUs
 - 0.5 GB memory

DIGITAL TWIN OF A SFRP MECHANICAL ANALYSIS - CT SCAN

calculated engineering parameters and stiffness tensor

Orthotropic Approximation					
	Strain Equivalence	Energy Equivalence	Mean Value		
Young's Modulus E_1 / (GPa)	7.1211	7.1213	7.1212 + 0.0001		
Young's Modulus E ₂ / (GPa)	7.9283	7.9285	7.9284 + 0.0001		
Young's Modulus E ₃ / (GPa)	11.3851	11.3852	11.3852 +- 0.0000		
Poisson Ratio V ₁₂	0.3547	0.3547	0.3547 + 0.0000		
Poisson Ratio V ₁₃	0.2160	0.2160	0.2160 + 0.0000		
Poisson Ratio V ₂₃	0.2517	0.2517	0.2517 + 0.0000		
Poisson Ratio V ₂₁	0.3949	0.3949	0.3949 + 0.0000		
Poisson Ratio V ₃₁	0.3454	0.3454	0.3454 + 0.0000		
Poisson Ratio V ₃₂	0.3614	0.3614	0.3614 + 0.0000		
Shear Modulus G ₁₂ / (GPa)	2.7558	2.7557	2.7558 + 0.0001		
Shear Modulus G ₁₃ / (GPa)	3.0113	3.0111	3.0112 + 0.0001		
Shear Modulus G ₂₃ / (GPa)	3.8636	3.8635	3.8636 + 0.0001		

Anisotropic Elasticity Tensor Stiffness Formulation for Strain Equivalence / (GPa						
5.4244	11.597	6.0651	0.80216	-0.08876	0.12121	
5.4949	6.0652	15.475	1.5932	-0.28255	-0.12848	
0.025595	0.80212	1.5932	3.8636	-0.24775	-0.17071	
-0.010275	-0.088766	-0.28258	-0.24774	3.0113	0.091551	
0.14133	0.12119	-0.12859	-0.17072	0.091522	2.7558	

DIGITAL TWIN OF A SFRP MECHANICAL ANALYSIS - CT SCAN

GEODICT

visualization of the von-Mises stress

Material Information:
ID 00: Polyamide (PA 6) [invis.]
ID 01: Glass

DIGITAL TWIN OF A SFRP GEOMETRICAL ANALYSIS - CT SCAN

GEODICT

fiber diameter distribution

DIGITAL TWIN OF A SFRP GEOMETRICAL ANALYSIS - CT SCAN

GEODICT

- fiber orientation analysis
 - using Star Length Distribution Algorithm
 - works on a per-voxel basis
 - analyzes the chord lengths through the voxel for a pre-defined set of directions
 - the relative length of the cords gives the per-voxel orientation tensor
 - tensors are averaged

DIGITAL TWIN OF A SFRP GEOMETRICAL ANALYSIS - CT SCAN

- fiber orientation analysis
 - homogenized orientation tensor for the entire scan
 - visualization of the main orientation
- calculation of the fiber volume fraction

Block 0,0,0: Solid Volume Fraction = 31.6262%

0.166223	-0.0163009	-0.0522386
-	0.28979	0.154429
-	-	0.543987

DIGITAL TWIN OF A SFRP GEOMETRICAL ANALYSIS - CT SCAN

fiber length analysis using Artificial Intelligence

μCT-Scan

identified fibers

DIGITAL TWIN OF A SFRP MODELING

GEODICT

 use all collected geometrical properties of the material for modelling the digital twin in FiberGeo

DIGITAL TWIN OF A SFRP MODELING

visual comparison of the twin and the μCT-scan

μCT-Scan

Digital Twin

DIGITAL TWIN OF A SFRP MECHANICAL ANALYSIS

GEODICT

comparison of the stiffness tensor

------ Anisotropic Elasticity Tensor ------

------ Anisotropic Elasticity Tensor ------

Stiffness Formulation for Strain Equivalence / (GPa)

Stilless Formulation for Stidin Equivalence / (or					
10.232	5.4243	5.4948	0.025524	-0.010267	0.14141
5.4244	11.597	6.0651	0.80216	-0.08876	0.12121
5.4949	6.0652	15.475	1.5932	-0.28255	-0.12848
0.025595	0.80212	1.5932	3.8636	-0.24775	-0.17071
-0.010275	-0.088766	-0.28258	-0.24774	3.0113	0.091551
0.14133	0.12119	-0.12859	-0.17072	0.091522	2.7558

Stiffness Formu	lation for Strair	n Equivalence	/ (GPa)
------------------------	-------------------	---------------	---------

10.757	5.4859	5.5878	0.053966	0.06989	0.16679
5.4859	11.688	6.0427	0.78271	-0.070062	0.16912
5.5879	6.0427	14.307	1.1605	-0.031768	-0.05373
0.054045	0.78275	1.1605	3.6667	-0.15612	-0.11499
0.069986	-0.069923	-0.031719	-0.15614	3.1619	0.081569
0.16684	0.16916	-0.053757	-0.11499	0.081581	2.9358

μCT-Scan

Digital Twin

very good agreement between µCT-scan and digital twin

OUTLINE

GEODICT

- **01** What is GeoDict?
- O2 Digital Twin of a Short Fiber Reinforced Polymer
- Other Examples of Digital Twins

OTHER EXAMPLES OF DIGITAL TWINS POLYSULFONE MICROMEMBRANE

used for seawater desalination

OTHER EXAMPLES OF DIGITAL TWINS SINTERED CERAMIC

used for soot particle filters

[Schmidt and Becker, Generating Validated 3D Models of Microporous Ceramics, 2013, Advanced Engineering Materials]

OTHER EXAMPLES OF DIGITAL TWINS SINTERED CERAMIC

used for soot particle filters

[Schmidt and Becker, Generating Validated 3D Models of Microporous Ceramics, 2013, Advanced Engineering Materials]

OTHER EXAMPLES OF DIGITAL TWINS GAS DIFFUSION LAYER

used in fuel cells

μCT-Scan

OTHER EXAMPLES OF DIGITAL TWINS GAS DIFFUSION LAYER

GEODICT

used in fuel cells

Identifying binder with Machine Learning

OTHER EXAMPLES OF DIGITAL TWINS GAS DIFFUSION LAYER

used in fuel cells

μCT-Scan

segmented image

THANK YOU FOR YOUR **ATTENTION!**

Visit us at Booth #21

Dr. Constantin Bauer

Business Manager Composites

constantin.bauer@math2market.de

+49 631 205 605 - 28

www.math2market.de

