

MSE Congress 2018, Darmstadt, 27.09.2018 Constantin Bauer

Benedikt Hannemann (IVW GmbH)

Matthias Kabel (Fraunhofer ITWM)

Sebastian Schmeer (IVW GmbH)

OUTLINE

GEODICT

- **01** What is GeoDict?
- **02** Motivation
- O3 Characterization of the Hybrid Composites
- **04** Microstructural Simulation
- 05 Conclusions

THE WORKFLOW FOR DIGITAL MATERIAL DESIGN WITH GEODICT®

GEODICT

IMPORT

ANALYZE

>>>

Model >>

DESIGN

>>>

NEXT GENERATION

MATERIAL

The idea is the beginning.

Design a material from scratch or import images from an existing material to create a digital model. Discover the geometric properties and compute the physical properties of the material.

This is the start of creating a Digital Twin.

A Digital Twin is the statistical representation of the material in the digital world.

Here begins the design process.

Digital prototypes are easily and rapidly created.

Simulate and evaluate in a loop to find the material with the desired properties.

The materials of the future are within reach and we help you find them faster.

DIGITAL MATERIAL

STATISTICAL MODEL

DIGITAL TWIN

DIGITAL PROTOTYPES

THIS IS INNOVATION THROUGH SIMULATION.

OUTLINE

GEODICT

01 What is GeoDict?

02 Motivation

O3 Characterization of the Hybrid Composites

04 Microstructural Simulation

05 Conclusions

MOTIVATION NEW BMW 7 CAR BODY

GEODICT

MOTIVATION MATERIAL PROPERTIES

GEODICT

CFRP	New hybrid ma	a Metal
+ High stiffr	+ High stiffr	+ High stiffness
+ High stre	+ High strei	+ Good strength
+ Very low do	+ Acceptable	- High density
- Brittle fai	+ Optimized t	+ Ductile failure
Poor energy at in tension	Good energy al	+ High energy absorption in tension
+ High energy all in compres	Good energy ab in compre	Good energy absorption in compression
Limited struintegrity in	+ Good struction integrity in	+ Superior structure integrity in crash
Poor elect	+ Sufficient ele conducti	+ High electrical conductivity
- High co	O Acceptable	+ Low cost

OUTLINE

GEODICT

01 What is GeoDict?

02 Motivation

O3 Characterization of the Hybrid Composites

04 Microstructural Simulation

05 Conclusions

CHARACTERIZATION OF THE HYBRID COMPOSITES

GEODICT

MATERIAL ANALYSIS

φ_R: 38.4 vol.% ρ: 1.59 g/cm³ t: 1.60 mm (45^c/-45^c/45^c/-45^c/90^c/0^c/90^c)_s

C: Carbon, S: Steel, R: Resin, φ: Volume share, ρ: Density, t: Laminate thickness

0.0 vol.%

CHARACTERIZATION OF THE HYBRID COMPOSITES

GEODICT

MANUFACTURING PROCESS

CHARACTERIZATION OF THE HYBRID COMPOSITES

GEODICT

EXPERIMENTAL RESULTS

Steel fibers can increase fail safe behavior significantly!

OUTLINE

GEODICT

01 What is GeoDict?

02 Motivation

O3 Characterization of the Hybrid Composites

04 Microstructural Simulation

05 Conclusions

GEODICT

MODEL DESIGN

models of the different laminates with 0.7 µm resolution

CFRP UD

(OR/OR/OR)

1x200x200 (40,000 voxel)

 (0_{8}^{C})

1x200x200 (40,000 voxel)

100x250x1141 (28,525,000 voxel)

100x250x1320 (33,000,000 voxel)

GEODICT

MATERIAL MODELS

epoxy matrix

- linear isotropic UMAT
- damage function: $\Delta C = (T_1 \cdot \log(-T_2 \cdot \log(D)) + T_3) \cdot T_4$
- failure criterion: maximum strain

carbon fiber

- linear elastic UMAT
- failure criterion: maximum stress

steel fiber

- linear elastic
- with general von-Mises yield criterion

GEODICT

MATERIAL MODELS

different material behaviors

GEODICT

MICROSTRUCTURAL SIMULATION SIMULATION RESULTS

multidirectional CFRP

GEODICT

multidirectional SCFRP

SIMULATION RESULTS

GEODICT

stress in loading direction (XX)

macroscopic strain

GEODICT

stress in loading direction (XX)

6,0

8,0

10,0

GEODICT

damage in epoxy resin

macroscopic strain

GEODICT

GEODICT

GEODICT

GEODICT

GEODICT

failure in carbon fiber

macroscopic strain

GEODICT

GEODICT

GEODICT

GEODICT

OUTLINE

GEODICT

- **01** What is GeoDict?
- **02** Motivation
- O3 Characterization of the Hybrid Composites
- 04 Microstructural Simulation
- 05 Conclusions

CONCLUSIONS

GEODICT

- Steel fibers increase the structural integrity of carbon fiber reinforced polymers significantly
- Microstructural simulation of such complex materials is possible and can be used to
 - reduce prototyping and testing effort
 - give insights into the micromechanical behavior of the materials
 - accelerates the material development process

GEODICT

THANK YOU FOR YOUR **ATTENTION!**

Visit us at Booth #21 come to our next Talk about "Digital Twin Modeling" 17:15, S1/01-A4

Dr. Constantin Bauer

Business Manager Composites

constantin.bauer@math2market.de

+49 631 205 605 - 28

www.math2market.de

