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SOME BACKGROUND INFORMATION
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Math2Market GmbH 

 creates and markets the scientific software GeoDict®.

 was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.

 is an privately owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

 is a software tool to analyze and design porous media and composites.

 works on 

 µCT and FIB-SEM 3D images or

 random geometric material models.
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SEGMENTED CT-SCAN OF A

NON-WOVEN STRUCTURE
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18310 x 4816 x 1704 (>150 billion) voxels, 4.4 x 1.2 x 0.4 cm³, 2.4 µm voxel length



                                                              

INTRODUCTION
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 3d imaging devices (e.g. µCT) allow deep insights into the structures of porous materials

 2000³ (8 billion) voxels is a standard size - imaged and reconstructed within hours

 Very fast and memory efficient methods are needed to deal with these images

 Researchers and engineers are interested in effective material properties such as

 permeability, pressure drop and mean velocity

 thermal and electrical conductivity, diffusivity and tortuosity,

 stiffness, strain, stress, or elastic moduli,

 saturation- or compression-dependent properties (e.g. relative permeability)

 Bottleneck of classical finite-element or -volume methods is the meshing step

 Runtime of the meshing step can take more runtime than the actual solving

 Manual adjustment of the mesh is often required

 Lattice-Boltzmann (LB) methods are advancing fast and do not require meshing

 But they require a lot of memory due to the D3Qm lattices

 Here, we present specialized finite-volume methods designed for large 3d images



                                                              

Two-Phase Flow
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ΔP-DRIVEN STOKES

© Math2Market GmbH-- 8 --

μΔu = 𝛻p on Ω ( Conservation of momentum )
𝛻 ∙ u = 0 on Ω ( Conservation of mass )
u = 0 on Γ No − slip on solid surfaces

Ω ⊂ 0, 𝑙𝑥 × 0, 𝑙𝑦 × 0, 𝑙𝑧 Domain

𝒖, p periodic on 𝛺 with boundary Γ, 

except for pressure drop P1-P2 = c 

As usual: u: velocity

p: pressure

μ: dynamic viscosity

෤𝑢: mean velocity

Darcy’s law: ෤𝑢 = −
𝑲

𝜇

𝑃1−𝑃2

𝐿

In the linear regime, i.e. for Stokes flow, the permeability K is a material 

property, independent of viscosity, density, and velocity of the fluid.

Pressure P2
Pressure P1

𝐿



                                                              

STAGGERED GRID
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 We present three different single-phase 

stationary Stokes flow solver methods

 Each has its own advantages and 

disadvantages

 Common denominator is the staggered 

grid discretization on voxel grids

 Staggered grid discretization [Harlow & Welch, 1965]

 Pressure lives at the center of the voxel

 Velocity components live at the center of 

the different voxel faces

‒ X-Velocity lives at the vertical X-faces

‒ Y-Velocity lives at the horizontal Y-faces

‒ Z-Velocity lives at the Z-faces
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Staggered grid for velocity variables



                                                              

EXPLICIT JUMP METHODS
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 Basic idea: introduce jump variables 𝜆 in the 

momentum equation for no-slip conditions

𝜇∆𝑢 − 𝛻𝑝  Ψ𝜆 = 𝑓

 Then we apply the divergence operator 𝛻 ⋅ to 

the momentum equation

𝜇Δ 𝛻 ⋅ 𝑢 − Δ𝑝  𝛻 ⋅ Ψ𝜆 = 𝛻 ⋅ 𝑓
Δ𝑝 − 𝛻 ⋅ Ψ𝜆 = 𝛻 ⋅ 𝑓

 The no-slip boundary condition is discretized by

Υ𝑢 = 0

 The final system of equations is given by

𝜇Δ −𝛻 Ψ
0 Δ −𝛻 ⋅ Ψ
Υ 0 0

𝑢
𝑝
𝜆
=

𝑓
𝛻 ⋅ 𝑓
0

 A Schur-complement eliminates velocity and pressure 

and the remainder 𝑀𝜆 = 𝑏 is solved by Krylov subspace 

methods and FFTs [Wiegmann, 2007]

Staggered grid for velocity variables with 

jumps for no-slip conditions

(1)

(2)

(3)



                                                              

EXPLICIT JUMP METHODS
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 The location of the jump variables depends on the specific no-slip 

discretization

 The natural domain boundary conditions are periodic

 Symmetric boundary conditions can be achieved by mirroring of the 

structure or using cosine transforms

 The convergence depends on the number of jump variables

 Converges very fast for highly porous structures

 Requires much less memory compared to LB methods

 Not (yet) extended to Navier-Stokes-Brinkman equations

 The Explicit Jump methods can also be used to solve poisson equations

 Convergence speed is independent of the phase contrast!



                                                              

SIMPLE-FFT METHOD

© Math2Market GmbH-- 12 --

 SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithms are 

widely used to solve Navier-Stokes-Brinkman equations [Patankar, 1980]

 The SIMPLE algorithm works as follow (start with 𝑢𝑛 and 𝑝𝑛)

1. Solve the momentum equation with Gauß-Seidel and get 𝑢∗

2. Solve pressure correction equation Δ𝑝′ = 𝜇Δ 𝛻 ⋅ 𝑢∗ which is simplified to 

Δ𝑝′ = −𝜇 diag Δ 𝛻 ⋅ 𝑢∗ with Gauß-Seidel and get 𝑝′

3. Update pressure with 𝑝𝑛+1 = 𝑝𝑛  𝑝′

4. Correct velocity with 𝑢𝑛+1 = 𝑢∗  diag Δ (∇𝑝′)

 The SIMPLE methods converge very slowly for low porosity structures due to the 

ineffective pressure correction step

 Basic idea: Exact pressure correction by FFT instead of approximate solve in step 2.

 Convergence speed dramatically higher than SIMPLE (up to 10 times)! 

 Very fast for low porosity structures

 Runtime per iteration is higher due to the FFT



                                                              

LIR METHOD – 1: MESH COARSENING
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 Adaptive grid: LIR-Tree [Linden et al., 2014]

 Combination of Octree and KD-tree

 Very low memory overhead

 Efficient neighborhood retrieval

 Grid adapts to geometry, 2:1 size ratios, 

velocity and pressure fields

 Minimize the number of tree traversals per iteration by a 

special block pde formulation

 This formalism allows to solve Navier-Stokes-Brinkman 

and Poisson equations with full anisotropy

 Convergence speed depends on the number of cells 

and the porosity of the structure

 Extremly fast for highly porous structures

 Very low memory requirements

Adaptive grid inside the pore space of a 

Berea sandstone



                                                              

LIR METHOD – 2: BLOCK PDE FORMULATION
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 Basic idea: split velocity variable 𝑢 into a left sided 𝑙 and right sided 𝑟 variable

 The momentum equation is discretized in two ways

𝜕2𝑢

𝜕𝑥2
−
𝜕𝑝

𝜕𝑥
→
 

ℎ2
𝑟𝑖 − 𝑙𝑖+0 − 𝑙𝑖+0 − 𝑙𝑖−1 −

 

ℎ
(𝑝𝑖 − 𝑝𝑖−1)

𝜕2𝑢

𝜕𝑥2
−
𝜕𝑝

𝜕𝑥
→
 

ℎ2
𝑟𝑖 − 𝑟𝑖−1 − 𝑟𝑖−1 − 𝑙𝑖−1 −

 

ℎ
(𝑝𝑖 − 𝑝𝑖−1)

 The mass conservation is discretized with
𝜕𝑢

𝜕𝑥
→
 

ℎ
(𝑟𝑖 − 𝑙𝑖)

 The Stokes equations are discretized as linear block system of equations per cell and can 

be solved by block Gauß-Seidel / SOR methods combined with Multigrid [Linden et al., 2015]

𝑝𝑖−1 𝑝𝑖 𝑝𝑖+1

𝑙𝑖−1 𝑟𝑖−1 𝑙𝑖 𝑟𝑖 𝑙𝑖+1 𝑟𝑖+1

−  − 
 −  
−  0

∙

𝑙𝑖
𝑛+1

𝑟𝑖
𝑛+1

𝑝𝑖
𝑛+1

=
−𝑙𝑖−1

𝑛+1 − 𝑝𝑖−1
𝑛+1

−𝑟𝑖+1
𝑛  𝑝𝑖+1

𝑛

0



                                                              

LIPPMANN SCHWINGER METHODS

© Math2Market GmbH-- 16 --

 Boundary value problem of linear elasticity: 

where 𝑢∗ is periodic and 𝜎 ⋅ 𝑛 is anti-periodic

 We introduce a reference material 𝐶0 and define a polarization field 𝜏

𝜏 = C − 𝐶0 : 𝜖

 Hooke’s law can then be transformed to

𝜎 = 𝐶0: 𝜖  𝜏

 Equilibrium of stresses can be solved by using the elastic Green operator Γ0

𝜖 = 𝐸 − Γ0 ∗ 𝜏

 Substitution of polarization yields the Lippmann Schwinger equation

𝜖  Γ0 ∗ 𝐶 − 𝐶0 : 𝜖 = 𝐼  𝐵𝜖 𝜖 = 𝐸

𝛻 ⋅ 𝜎 = 0
𝜎 = 𝐶: 𝜖
 𝜖 =  𝐸  𝛻𝑢∗  𝛻𝑢∗ 𝑇

Equilibrium of stresses

Hooke’s law

[Moulinec,Suquet

1994,1998]



                                                              

LIPPMANN SCHWINGER METHODS
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 The Lippmann Schwinger equations can be solved by using Neumann series or 

Krylov subspace methods using FFT and is implemented in the FeelMath solver

 Basis scheme with Neumann series [Kabel et al., 2014]

𝜏 = 𝐶 − 𝐶0 : 𝜖𝑛

Ƹ𝜏 = 𝐹𝐹𝑇 𝜏
ො𝜂 = −Γ0: Ƹ𝜏, ො𝜂 0 = 𝐸

𝜖𝑛+1 = 𝐹𝐹𝑇−1 ො𝜂

 Staggered grid for discretization of displacement, strain, and stress [Schneider et al., 2016]

 Convergence speed is independent of grid size but depends on phase contrast 𝜌

 𝒪 𝜌 for Neumann series

 𝒪 𝜌 for Krylov subspace methods

 Supports isotropic and anisotropic constituent materials

 Works for linear and non-linear constitutive equations of stresses

 LS methods can also be used to solve conduction or flow equations



                                                              

TWO-PHASE FLOWS AND SATURATION-

DEPENDENT PROPERTIES
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 The Explicit-Jump, SIMPLE-FFT, and LIR methods solve the single-phase 

stationary (Navier-)Stokes(-Brinkman) equations

 But in many application areas, researchers are interested in 

saturation-dependent properties (e.g. relative permeability)

 For relative permeability, we must solve two-phase flow equations 

instead of single-phase flow equations

 We assume flow regimes where capillary forces caused by surface 

tension and capillary pressure are dominating (i.e. low capillary number)

 Solving two-phase flow equations is very challenging and runtimes are 

very high

 Here, we present an alternative approach …



                                                              

PORE MORPHOLOGY METHODS
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… predict the distribution of the two phases inside porous 

media and the capillary pressure curve

Basic Idea

 “Push” spheres into/outside the structure & 

reduce/increase sphere radii [Hilpert and Miller, 2001]

 Superposition of spheres represent the non-wetting 

phase

 Perform connectivity checks to consider 

trapped/residual phases [Ahrenholz et al., 2008]

 Use sphere radii & Young-Laplace 𝑝𝑐 =  
𝛾

𝑟
cos𝛼 to 

predict the capillary pressure

 Inscribe different contact angles by sphere radii 
𝑟

cos 𝛼
[Schulz et. al., 2015]

Advantage

 No partial differential equations are solved

 Very low runtime & memory requirements

Assumption

 Quasi-stationary phase distribution

 Low capillary number

Water (WP) Reservoir

Oil (NWP) Reservoir
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FILTRATION SIMULATION AT DIFFERENT SCALES
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Single pleat

(macro/meso scale)
Filter media

(micro scale) 

Filter element

(macro scale) 

Dust 

holding 

Capacity

Pressure 

Drop 𝚫𝑷

Filter 

Efficiency 𝜷



                                                              

FILTRATION SIMULATION
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 EJ, SIMPLE-FFT, or LIR compute permeability, flow resistivity, or 

pressure drop, even frequency dependent acoustic absorption 
[Schladitz, 2015]

 Filtration process is simulated by a Lagrangian formulation of 

particle transport (repeat steps 1.-3.) [Latz, 2003]

1. A flow field is computed

2. Particles start from the inlet and move due to their own 

mass, friction with the fluid and Brownian motion

3. Particles may be captured on fibers or deposited particles

 Electrostatic forces can be considered using the gradient of a 

potential field [Rief, 2006]

 Computed filter properties agree with measurements [Becker, 2013]

 Particle diameters usually span multiple length scales and are 

modelled by an empty-solid model or porous media approaches
[Becker, 2016]

Filtration simulation on a 

gradient fiber media 

[Azimian, 2018]



                                                              

DIGITAL ROCK PHYSICS
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 Digital rock physics (DRP) is the determination of physical rock 

properties by numerical simulations and

 complements or replaces laboratory measurements

 reduce time and cost compared to measurements

 Researchers and petroleum engineers are interested in

 Porosity, pore-body and pore-throat size distributions

 Tortuosity, electrical conductivity

 Absolute and relative permeability

 Capillary pressure curves

 Stiffness and compression-dependent properties

 Porosity is often below 20% and pore networks are very complex

 EJ, SIMPLE-FFT, and LIR showed very good performance in a 

benchmark study with six other methods [Saxena, 2017]

CT-scan of a Berea sandstone

Stokes flow through a 

segmented Berea sandstone



                                                              

BATTERY ELECTRODE DESIGN WORKFLOW
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FIB-SEM image stack

Image Processing Segmentation

Battery Simulations



                                                              

GAS DIFFUSION LAYERS
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 Fuels are another promising technology used in 

automotive industry to convert chemical energy into 

electricity

 The structure has similarities to a battery: 

anode, separator, and cathode

 Gas diffusion layers (GDL) are nonwoven porous 

structures made of carbon fibers

 Plays an important role for the transport of 

reactants and products

 Important properties of GDLs that can be simulated

 Distribution of fluids and gas, capillary pressure
[Schulz, 2007]

 Absolute and relative permeability [Becker, 2009]

 Gas diffusivity, electrical and thermal conductivity
[Zamel, 2010]

 Compression dependent behavior

Water invades a GDL and displaces Air



                                                              

COMPOSITES

© Math2Market GmbH-- 26 --

 Composite materials and digital material engineering of 

composites are essential in current component development

 Creation of realistic microstructure models and

 Determination of their physical properties helps in 

product development

 Applications: e.g. carbon or glass fiber-reinforced plastics 

 Lippmann-Schwinger methods are especially suited for 

simulation of mechanical properties and they agree with 

measurements [Sliseris, 2014]

 Engineers are interested in

 Full mechanical stiffness tensor, elastic moduli

 Evolution of deformation and damage [Fliegener, 2016]

 Permeability

Short/Long fiber composite

Woven structure



                                                              

SUMMARY & CONCLUSIONS
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 We presented three different single-phase flow solver methods 

designed for porous media

 Each has its own advantages and disadvantages

 One can choose the best solver for a given application

 Development of new features is easier in the presence of different 

solver methods

 Alternative to LBM methods

 The flow solvers can be combined with mechanics or two-phase flow 

methods

 Solvers are successfully used in different application areas

 A standard workstation is enough for simulation on large 3d images
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