

SPECIALIZED METHODS FOR DIRECT NUMERICAL SIMULATIONS IN POROUS MEDIA

NAFEMS, Wiesbaden, November 12th-13th

Sven Linden, Liping Cheng, Matthias Kabel, Andreas Wiegmann

Math2Market GmbH

SOME BACKGROUND INFORMATION

GEODICT

Math2Market GmbH

- creates and markets the scientific software GeoDict[®].
- was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.
- is an privately owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

- is a software tool to analyze and design porous media and composites.
- works on
 - μCT and FIB-SEM 3D images or
 - random geometric material models.

OUTLINE

- **01** Introduction
- 02 Direct numerical methods
- O3 Application examples

OUTLINE

GEODICT

01 Introduction

O2 Direct numerical methods

O3 Application examples

GEODICT

SEGMENTED CT-SCAN OF A NON-WOVEN STRUCTURE

INTRODUCTION

- 3d imaging devices (e.g. μCT) allow deep insights into the structures of porous materials
 - 2000³ (8 billion) voxels is a standard size imaged and reconstructed within hours
- Very fast and memory efficient methods are needed to deal with these images
- Researchers and engineers are interested in effective material properties such as
 - permeability, pressure drop and mean velocity
 - thermal and electrical conductivity, diffusivity and tortuosity,
 - stiffness, strain, stress, or elastic moduli,
 - saturation- or compression-dependent properties (e.g. relative permeability)
- Bottleneck of classical finite-element or -volume methods is the meshing step
 - Runtime of the meshing step can take more runtime than the actual solving
 - Manual adjustment of the mesh is often required
- Lattice-Boltzmann (LB) methods are advancing fast and do not require meshing
 - But they require a lot of memory due to the D3Qm lattices
- Here, we present specialized finite-volume methods designed for large 3d images

OUTLINE

GEODICT

01 Introduction

02 Direct numerical methods

1. Explicit Jump

2. SIMPLE-FFT

Single-Phase Flow

3. LIR

4. Lippmann Schwinger

Mechanics

5. Pore Morphology

Two-Phase Flow

03 Application examples

ΔP-DRIVEN STOKES

GEODICT

$$\begin{split} \mu \Delta \mathbf{u} &= \nabla \mathbf{p} \text{ on } \Omega \quad \text{(Conservation of momentum)} \\ \nabla \cdot \mathbf{u} &= 0 \quad \text{on } \Omega \quad \text{(Conservation of mass)} \\ \mathbf{u} &= 0 \quad \text{on } \Gamma \quad \text{(No-slip on solid surfaces)} \\ \Omega &\subset [0,l_x] \times \left[0,l_y\right] \times \left[0,l_z\right] \quad \text{(Domain)} \end{split}$$

 \mathbf{u} , p periodic on Ω with boundary Γ , except for pressure drop P_1 - P_2 = c

As usual: *u:* velocity

p: pressure

 μ : dynamic viscosity

 \tilde{u} : mean velocity

Pressure P₁

Pressure P₂

Darcy's law:
$$\tilde{u} = -\frac{K}{\mu} \frac{(P_1 - P_2)}{L}$$

In the linear regime, i.e. for Stokes flow, the permeability **K** is a material property, independent of viscosity, density, and velocity of the fluid.

STAGGERED GRID

- We present three different single-phase stationary Stokes flow solver methods
 - Each has its own advantages and disadvantages
 - Common denominator is the staggered grid discretization on voxel grids
- Staggered grid discretization [Harlow & Welch, 1965]
 - Pressure lives at the center of the voxel
 - Velocity components live at the center of the different voxel faces
 - X-Velocity lives at the vertical X-faces
 - Y-Velocity lives at the horizontal Y-faces
 - Z-Velocity lives at the Z-faces

Staggered grid for velocity variables

EXPLICIT JUMP METHODS

GEODICT

Basic idea: introduce *jump* variables λ in the momentum equation for no-slip conditions

$$\mu \Delta u - \nabla p + \Psi \lambda = f \tag{1}$$

Then we apply the divergence operator $\nabla \cdot$ to the momentum equation

$$\mu\Delta(\nabla\cdot u) - \Delta p + \nabla\cdot\Psi\lambda = \nabla\cdot f$$
$$\Delta p - \nabla\cdot\Psi\lambda = \nabla\cdot f \tag{2}$$

The no-slip boundary condition is discretized by

$$\Upsilon u = 0 \tag{3}$$

The final system of equations is given by

$$\begin{pmatrix} \mu \Delta & -\nabla & \Psi \\ 0 & \Delta & -\nabla \cdot \Psi \\ \Upsilon & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ p \\ \lambda \end{pmatrix} = \begin{pmatrix} f \\ \nabla \cdot f \\ 0 \end{pmatrix}$$

A Schur-complement eliminates velocity and pressure and the remainder $M\lambda = b$ is solved by Krylov subspace methods and FFTs [Wiegmann, 2007]

Staggered grid for velocity variables with jumps for no-slip conditions

EXPLICIT JUMP METHODS

- The location of the jump variables depends on the specific no-slip discretization
- The natural domain boundary conditions are periodic
 - Symmetric boundary conditions can be achieved by mirroring of the structure or using cosine transforms
- The convergence depends on the number of jump variables
 - Converges very fast for highly porous structures
- Requires much less memory compared to LB methods
- Not (yet) extended to Navier-Stokes-Brinkman equations
- The Explicit Jump methods can also be used to solve poisson equations
 - Convergence speed is independent of the phase contrast!

SIMPLE-FFT METHOD

- SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithms are widely used to solve Navier-Stokes-Brinkman equations [Patankar, 1980]
- The SIMPLE algorithm works as follow (start with u^n and p^n)
 - 1. Solve the momentum equation with Gauß-Seidel and get u^*
 - 2. Solve pressure correction equation $\Delta p' = \mu \Delta (\nabla \cdot u^*)$ which is simplified to $\Delta p' = -\mu \operatorname{diag}[\Delta](\nabla \cdot u^*)$ with Gauß-Seidel and get p'
 - 3. Update pressure with $p^{n+1} = p^n + p'$
 - 4. Correct velocity with $u^{n+1} = u^* + \text{diag}[\Delta](\nabla p')$
- The SIMPLE methods converge very slowly for low porosity structures due to the ineffective pressure correction step
- Basic idea: Exact pressure correction by FFT instead of approximate solve in step 2.
- Convergence speed dramatically higher than SIMPLE (up to 10 times)!
 - Very fast for low porosity structures
 - Runtime per iteration is higher due to the FFT

LIR METHOD - 1: MESH COARSENING

- Adaptive grid: LIR-Tree [Linden et al., 2014]
 - Combination of Octree and KD-tree
 - Very low memory overhead
 - Efficient neighborhood retrieval
 - Grid adapts to geometry, 2:1 size ratios, velocity and pressure fields
- Minimize the number of tree traversals per iteration by a special block pde formulation
- This formalism allows to solve Navier-Stokes-Brinkman and Poisson equations with full anisotropy
- Convergence speed depends on the number of cells and the porosity of the structure
 - Extremly fast for highly porous structures
- Very low memory requirements

Adaptive grid inside the pore space of a Berea sandstone

LIR METHOD - 2: BLOCK PDE FORMULATION

GEODICT

Basic idea: split velocity variable u into a left sided l and right sided r variable

The momentum equation is discretized in two ways

$$\frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial p}{\partial x} \to \frac{1}{h^{2}} \left((r_{i} - l_{i}) - (l_{i} - l_{i-1}) \right) - \frac{1}{h} (p_{i} - p_{i-1})$$

$$\to \frac{1}{h^{2}} \left((r_{i} - r_{i-1}) - (r_{i-1} - l_{i-1}) \right) - \frac{1}{h} (p_{i} - p_{i-1})$$

The mass conservation is discretized with

$$\frac{\partial u}{\partial x} \to \frac{1}{h} (r_i - l_i)$$

■ The Stokes equations are discretized as linear block system of equations per cell and can be solved by block Gauß-Seidel / SOR methods combined with Multigrid [Linden et al., 2015]

$$\begin{pmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} l_i^{n+1} \\ r_i^{n+1} \\ p_i^{n+1} \end{pmatrix} = \begin{pmatrix} -l_{i-1}^{n+1} - p_{i-1}^{n+1} \\ -r_{i+1}^n + p_{i+1}^n \\ 0 \end{pmatrix}$$

LIPPMANN SCHWINGER METHODS

GEODICT

Boundary value problem of linear elasticity:

$$\nabla \cdot \sigma = 0$$

 $\sigma = C : \epsilon$
 $2\epsilon = 2E + \nabla u^* + (\nabla u^*)^T$

Equilibrium of stresses Hooke's law

where u^* is periodic and $\sigma \cdot n$ is anti-periodic

• We introduce a reference material C^0 and define a polarization field τ

$$\tau = (C - C^0)$$
: ϵ

Hooke's law can then be transformed to

$$\sigma = C^0$$
: $\epsilon + \tau$

• Equilibrium of stresses can be solved by using the elastic Green operator Γ^0

$$\epsilon = E - (\Gamma^0 * \tau)$$

Substitution of polarization yields the Lippmann Schwinger equation [Moulinec, Suquet

$$\epsilon + \Gamma^0 * ((C - C^0): \epsilon) = (I + B_{\epsilon})\epsilon = E$$

LIPPMANN SCHWINGER METHODS

- The Lippmann Schwinger equations can be solved by using Neumann series or Krylov subspace methods using FFT and is implemented in the FeelMath solver
 - Basis scheme with Neumann series [Kabel et al., 2014]

$$\tau = (C - C^{0}): \epsilon^{n}$$

$$\hat{\tau} = FFT(\tau)$$

$$\hat{\eta} = -\Gamma^{0}: \hat{\tau}, \quad \hat{\eta}(0) = E$$

$$\epsilon^{n+1} = FFT^{-1}(\hat{\eta})$$

- Staggered grid for discretization of displacement, strain, and stress [Schneider et al., 2016]
- Convergence speed is independent of grid size but depends on phase contrast ρ
 - $\mathcal{O}(\rho)$ for Neumann series
 - $O(\sqrt{\rho})$ for Krylov subspace methods
- Supports isotropic and anisotropic constituent materials
- Works for linear and non-linear constitutive equations of stresses
- LS methods can also be used to solve conduction or flow equations

TWO-PHASE FLOWS AND SATURATION-DEPENDENT PROPERTIES

- The Explicit-Jump, SIMPLE-FFT, and LIR methods solve the single-phase stationary (Navier-)Stokes(-Brinkman) equations
 - But in many application areas, researchers are interested in saturation-dependent properties (e.g. relative permeability)
- For relative permeability, we must solve two-phase flow equations instead of single-phase flow equations
- We assume flow regimes where capillary forces caused by surface tension and capillary pressure are dominating (i.e. low capillary number)
- Solving two-phase flow equations is very challenging and runtimes are very high
- Here, we present an alternative approach ...

Pore Morphology Methods

GEODICT

... predict the distribution of the two phases inside porous media and the capillary pressure curve

Basic Idea

- "Push" spheres into/outside the structure & reduce/increase sphere radii [Hilpert and Miller, 2001]
- Superposition of spheres represent the non-wetting phase
- Perform connectivity checks to consider trapped/residual phases [Ahrenholz et al., 2008]
- Use sphere radii & Young-Laplace $p_c = 2\frac{\gamma}{r}\cos\alpha$ to predict the capillary pressure
- Inscribe different contact angles by sphere radii $\frac{r}{\cos \alpha}$ [Schulz et. al., 2015]

Advantage

- No partial differential equations are solved
- Very low runtime & memory requirements

Assumption

- Quasi-stationary phase distribution
- Low capillary number

OUTLINE

GEODICT

01 Introduction

O2 Direct numerical methods

O3 Applications examples

- 1. Filtration
- 2. Digital Rock Physics
- 3. Battery Cathode Materials
- 4. Gas Diffusion Layers
- 5. Composites

FILTRATION SIMULATION

- EJ, SIMPLE-FFT, or LIR compute permeability, flow resistivity, or pressure drop, even frequency dependent acoustic absorption
- Filtration process is simulated by a Lagrangian formulation of particle transport (repeat steps 1.-3.) [Latz, 2003]
 - 1. A flow field is computed
 - Particles start from the inlet and move due to their own mass, friction with the fluid and Brownian motion
 - 3. Particles may be captured on fibers or deposited particles
- Electrostatic forces can be considered using the gradient of a potential field [Rief, 2006]
- Computed filter properties agree with measurements [Becker, 2013]
- Particle diameters usually span multiple length scales and are modelled by an empty-solid model or porous media approaches [Becker, 2016]

Filtration simulation on a gradient fiber media [Azimian, 2018]

DIGITAL ROCK PHYSICS

- Digital rock physics (DRP) is the determination of physical rock properties by numerical simulations and
 - complements or replaces laboratory measurements
 - reduce time and cost compared to measurements
- Researchers and petroleum engineers are interested in
 - Porosity, pore-body and pore-throat size distributions
 - Tortuosity, electrical conductivity
 - Absolute and relative permeability
 - Capillary pressure curves
 - Stiffness and compression-dependent properties
- Porosity is often below 20% and pore networks are very complex
- EJ, SIMPLE-FFT, and LIR showed very good performance in a benchmark study with six other methods [Saxena, 2017]

CT-scan of a Berea sandstone

Stokes flow through a segmented Berea sandstone

BATTERY ELECTRODE DESIGN WORKFLOW

GAS DIFFUSION LAYERS

- Fuels are another promising technology used in automotive industry to convert chemical energy into electricity
 - The structure has similarities to a battery: anode, separator, and cathode
- Gas diffusion layers (GDL) are nonwoven porous structures made of carbon fibers
 - Plays an important role for the transport of reactants and products
- Important properties of GDLs that can be simulated
 - Distribution of fluids and gas, capillary pressure
 [Schulz, 2007]
 - Absolute and relative permeability [Becker, 2009]
 - Gas diffusivity, electrical and thermal conductivity
 [Zamel, 2010]
 - Compression dependent behavior

Proton Exchange Membrane (Electrolyte)

Water invades a GDL and displaces Air

COMPOSITES

- Composite materials and digital material engineering of composites are essential in current component development
 - Creation of realistic microstructure models and
 - Determination of their physical properties helps in product development
- Applications: e.g. carbon or glass fiber-reinforced plastics
- Lippmann-Schwinger methods are especially suited for simulation of mechanical properties and they agree with measurements [Sliseris, 2014]
- Engineers are interested in
 - Full mechanical stiffness tensor, elastic moduli
 - Evolution of deformation and damage [Fliegener, 2016]
 - Permeability

Short/Long fiber composite

SUMMARY & CONCLUSIONS

- We presented three different single-phase flow solver methods designed for porous media
 - Each has its own advantages and disadvantages
 - One can choose the best solver for a given application
 - Development of new features is easier in the presence of different solver methods
 - Alternative to LBM methods
- The flow solvers can be combined with mechanics or two-phase flow methods
- Solvers are successfully used in different application areas
- A standard workstation is enough for simulation on large 3d images

GEODICT

THANK YOU FOR YOUR ATTENTION!

Visit us at our booth

Sven, Linden

Senior Software Engineer

****** +49 631 205 605 - 19

www.math2market.de

