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Summary: 
 
3D imaging methods, such as micro computed tomography or focused ion beam scanning electron 
microscopy, allow deep insights into the three-dimensional structure of porous materials. The resulting 
3D data sets are very large, often exceeding 2000³ or 8 billion volume elements called voxels. 
Researchers and engineers are interested in determining effective homogenized material properties 
based on these data sets to understand existing materials or to design new man-made materials. Recent 
advances in software technologies have made it possible to compute and visualize effective properties 
such as permeability, and thermal or electrical conductivity on these large images in very short times 
and using surprisingly little memory. 
Classical finite-element or finite-volume methods are not suited to compute physical properties on these 
large images. The bottleneck of these methods is the mesh generation that must be done before the 
actual simulation can take place and can take longer than the solving of the discretized partial differential 
equation. Instead, complex microstructures are best dealt with by fast and memory efficient numerical 
methods that are explicitly designed for them. 
In this paper, we present state-of-the-art numerical finite-volume-based and fast Fourier transformation-
based methods which do not require mesh generation and are designed to compute effective properties 
directly on very large 3D images. We also present relevant application areas where these methods are 
used successfully and how simulations on the microscale help to encourage computational material 
research and development. 
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1 Introduction 

3D imaging methods and devices developed during the last decades allow a penetrating look inside 
natural and man-made materials. Especially micro computed tomography (µCT) scanning devices with 
voxel lengths down to 250 nm and focused ion beam scanning electron microscopy (FIB-SEM) with 
voxel lengths down to 10 nm allow insights into the three-dimensional structure of porous materials. 
Nowadays, 3D images with 2000³ (or 8 billion) voxels are a standard size that can be imaged and 
reconstructed within hours. 
With the development of 64-Bit technology and increase in computational power, it became possible to 
visualize and compute effective properties on these large 3D images. But very fast and memory efficient 
numerical methods are needed. Many researchers and engineers are interested in effective 
homogenized material properties such as 

• permeability, pressure drop and mean velocity, 

• thermal and electrical conductivity, 

• diffusivity and tortuosity,  

• stiffness, strain, stress, or elastic moduli, 

• saturation- or compression-dependent properties such as relative permeability. 
Classical finite-element or finite-volume methods are not suited to compute physical properties on these 
large images. The bottleneck of these methods is the mesh generation that must be done before the 
actual simulation can take place. In many cases, simulation engineers must adjust the generated 
meshes manually to ensure that simulations converge properly and provide the desired accuracy. In 
addition, mesh generation often takes more runtime than the actual solving of the discretized partial 
differential equations (PDE). 
For computation of flow properties, Lattice-Boltzmann (LB) methods which do not require mesh 
generation [1] are used by many researchers. For computation of conductive/diffusive and mechanical 
properties, methods that make use of the fast Fourier transformation (FFT) are advancing fast [2]. Both 
LB and FFT methods work on the voxel grid directly without any meshing. 
Our group at Math2Market also makes use of these methods but years ago decided not to develop our 
LB methods any further and instead focus on finite-volume and FFT-based methods. The LB methods 
have the disadvantage of requiring more memory due to the D3Qm lattices. On the other hand, finite-
volume-base and FFT-based methods can be discretized in such a way that they work on voxel grids 
just on the original variables of the PDE. Thus, they require less memory than LB methods. In addition, 
the development of adaptive grid methods made it possible to additionally reduce the memory usage. 
The combination of geometric two-phase methods and single-phase finite-volume methods also allows 
to compute saturation-dependent properties such as relative permeability. 
In this paper, we give an overview of our state-of-the-art finite-volume and FFT-based methods. In 
addition, we present significant application areas where these methods are used successfully and how 
simulations on the microscale help to incite material research and development. 
 

2 Direct numerical methods 

GeoDict, the digital material laboratory software developed by Math2Market GmbH, brings five different 
solution methods into play for the simulation of single-phase and two-phase fluid flow, conduction, and 
mechanics in porous media. First, we start with the single-phase fluid flow solvers. The solvers are in 
order of their inception: Explicit Jump (EJ-Stokes), SIMPLE-FFT, and LIR. The common denominator of 
all three solvers are (1) the direct simulation on 3D images (e.g. µCT scans), (2) their usage of a finite 
volume formulation, and (3) their discretization of the no-slip boundary conditions. The EJ and LIR 
methods can also be used for the simulation of conductivity, i.e. solving the Poisson equation. 

2.1 The Explicit Jump formulation for Flow and Conduction Simulation. 

In 1965, Harlow and Welch [3], introduced a finite volume formulation on a staggered grid. Simplifying 
this formulation for voxels (the little cubes a digital 3D image is thought to be made of), it can be said 
that the pressure variables represent an average for the whole cube and live at the cube centers, 
whereas the velocities represent transport across faces between the cubes and live on the respective 
faces of the cube. That is, the x-velocity lives on the left and right x-faces of the cube, the y-velocity lives 
on front and back faces of the cube, and the z- velocity lives on the bottom and top faces of the cube. 
A predecessor of EJ-Stokes, the FFF-Stokes method by Wiegmann in 2007 [4], used this staggered grid 
formulation, but implemented the no-slip boundary conditions with less accuracy than originally 
suggested by Harlow and Welch, and was based on ideas by Wiegmann and Bube in 2000 [5]. The 
steady-state Stokes equations for laminar flows is described by 



 

μΔu − ∇p = 𝑓 
∇ ⋅ 𝑢 = 0 
𝑢|𝜕Ω = 0 

momentum conservation 
mass conservation 
no-slip boundary condition 

(1) 

with constant viscosity 𝜇, velocity 𝑢 and pressure 𝑝 in the domain Ω. The domain is periodic and the 

direction of the flow is induced by the unit vector 𝑓 that always points in the direction of one of the 
coordinate axes. The Stokes operator is decoupled into four Poisson problems, and each Poisson 
problem is solved by a Fast Fourier Transform (FFT) approach. The details of FFT-based fast Poisson 
solvers can be found in Swarztrauber [6]. The Poisson problem approach is at the base of the speed of 
the FFF-Stokes, EJ-Stokes, and SIMPLE-FFT solvers. These solvers are made explicitly to work on 3d 
images, which have the regular grid spacing needed to use the FFT and are the main reason for the 
FFT’s high performance. 
The FFF-Stokes solver over-simplified the discretization of the no-slip boundary conditions at the price 
of reduced accuracy for pores in the shape of narrow channels. EJ-Stokes overcomes this limitation by 
implementing the original boundary conditions from Harlow & Welch (see also Fig.1), i.e. has higher 
accuracy. EJ-Stokes uses the Biconjugate gradient stabilized method [7] to solve the derived non-
symmetric linear system of equations. A Schur-complement for auxiliary (Explicit-Jump) variables 
represents discontinuities in the flow velocity derivatives and is iterated until the residual has reached a 
small enough value or until the derived permeability has converged sufficiently well. 
The natural boundary conditions for the EJ-Stokes solver are periodic boundary conditions for the flow 
variables on all six faces of the 3d image and no-slip boundary conditions on the solid surfaces. Due to 
the staggered grid, no boundary conditions are needed for the pressure variables at the no-slip solid 
surfaces, periodic boundary conditions are used on the four tangential faces and, in the direction of the 
flow, a discontinuity in the pressure of the magnitude of the specified pressure drop is implemented. 
Symmetry conditions in the tangential direction and constant pressures on inlet and outlet can be 
enforced by appropriate mirroring of the computational domain.  
As mentioned before, the EJ-Stokes solver is specifically made for computations on 3D and 2D images, 
such as segmented CT scans and segmented FIB-SEM scans. A drawback is that the solver allocates 
memory also for the solid portions of the image and not only for the pore space. It also converges slowly 
for low porosity structures with high geometric complexity compared to high porosity structures with low 
geometric complexity. The EJ-Stokes approach does not (yet) extend to the Stokes-Brinkman, Navier-
Stokes, and Navier-Stokes-Brinkman equations. A strong point is that it typically requires less than 10% 
of the memory needed by a Lattice-Boltzmann implementation on the same image while converging 
significantly faster for the same image and same accuracy. The Explicit Jump formalism also allows to 
solve the: 

∇ ⋅ (β∇U)  = 𝑓 Poisson equation (2) 

with isotropic conductivity 𝛽 and scalar temperature (or electric potential) 𝑈. Here, harmonic averaging 
is used to compute conductivities at voxel faces and explicit jump variables across material interfaces 
are introduced to represent discontinuities of temperature derivatives. Again, a Schur-complement 
formulation for the jump variables is derived and solved by using the FFT and BiCGStab methods [8]. 
The convergence speed of this method is almost independent of the conductivity contrast which is a 
very big advantage compared to other approaches. 

2.2 SimpleFFT for Flow Simulations 

SIMPLE-FFT is a variant, and FFT-accelerated version, of the Semi-Implicit Method for Pressure-Linked 
Equations, or SIMPLE [9] algorithm. SIMPLE-FFT is a finite-volume method on a staggered grid. With 
the classic SIMPLE algorithm, the flow field is firstly approximated by solving the momentum equation, 
in which the pressure gradient term is set from an initial guess or calculated using the pressure 
distribution from the previous iteration. The pressure correction equation is formulated and solved to 
obtain a new pressure distribution. Velocities are then corrected. The iterations continue until they reach 
a certain stopping criterion.  
For porous media, due to their complex connectivity, the classical SIMPLE algorithm has difficulty 
converging to the solution of the steady state Stokes equations. Solving the pressure correction equation 
was identified as the bottleneck of convergence because the inaccuracy of the pressure correction step 
requires excessively many iterations. In SIMPLE-FFT, the FFT is then used to solve the pressure 
correction Poisson equation exactly instead of just taking a single step. This reduces the iterations and 
computation times dramatically even though the cost of an individual iteration rises significantly. 

With no-slip boundary condition on the wall, as shown in Fig. 1, the velocity components 𝑢𝑖,𝑗+1, 𝑢𝑖,𝑗, and 

𝑢𝑖,𝑗−1 are the surface variables on the true wall surfaces in the normal direction of a solid, so they are 

all zero. In the tangential direction, because the surface variables are half mesh size off the computation 



 

variables, following Harlow and Welsh two cells neighboring to the interface must be considered: one in 
the solid and the other in the void domain. We set 𝑣𝑖,𝑗 = −𝑣𝑖,𝑗−1 to get the first order approximation of 

zero velocity on the wall. 

 

Fig. 1: shows a 2D example with the surface variables in the horizontal (circles) and vertical directions (squares). 

 
When there exists unresolved porosity in the structure, i.e., some of the voxels are permeable, the 
Stokes-Brinkman equations can be solved with SIMPLE-FFT by providing the permeability of the porous 
voxels. When the flow is fast and Darcy’s law does not hold any more, SIMPLE-FFT solves Navier-
Stokes equations, and when both fast flow and porous voxels are present, Navier-Stokes-Brinkman 
equations are solved. 
SIMPLE-FFT runs on the uniform Cartesian grid of a 3D image and, on each grid cell, three velocity 
components and pressure need to be found. The variables inside the solid are enforced to zero. 
SIMPLE-FFT has its advantages when a structure has low porosity while only the unknown variables in 
the void spaces are to be solved and the pressure correction can be propagated to the velocity correction 
quickly. Fewer iterations and lower runtime are required compared to structures with the same size but 
higher porosity. On the other hand, when the porosity of a structure is higher, there are more unknowns 
and the momentum equations still need a high number of iterations to solve the velocity field even though 
the pressure correction can be easily found with the FFT algorithm. The memory usage of SIMPLE-FFT 
is decided by the grid size, regardless of the porosity. SIMPLE-FFT requires more memory when 
compared to the EJ and LIR solvers. 

2.3 LIR for Flow and Conduction Simulations 

The LIR [10] is the newest, a very fast and memory efficient iterative finite volume method. The solver 
computes the permeability, as well as velocity and pressure fields, on large 3D images. As happens for 
the SIMPLE-FFT, the LIR solver can be used for the numerical solution of the Stokes, Stokes-Brinkman, 
Navier-Stokes, and Navier-Stokes-Brinkman equations. 
Usually, 3D images are represented as regular voxel grids where the number of grid cells grows 
cubically. The LIR solver uses an adaptive grid, instead of a regular grid, to reduce significantly the 
number of grid cells. The basis of the adaptive grid is a data structure called LIR-tree (a combination of 
Octree and KD-tree) that is used for spatial partitioning of 3D images [11]. The pores are represented 
as differently sized rectangular cuboid cells. Solid regions do not require any computational memory. 
The pore space is coarsened in areas with small velocity and pressure variations, while keeping the 
original resolution near the solid surfaces and in regions where velocity or pressure vary rapidly. 
Variables are arranged in such a way that each cell can satisfy the (Navier-)Stokes(-Brinkman)-
equations independently from its neighbor cells. Pressure and velocity are discretized on staggered 
grids (see also Fig. 1) but two velocity variables, namely one for each neighboring cell, are introduced 
instead of using one velocity variable on the cell faces. The two velocity variables discretize the two one-
sided limits at the center of the cell surface. The discretization of the momentum and mass conservation 
equations yields one 7x7 linear system (block) per cell. This block structure allows using the block Gauß-
Seidel algorithm as an iterative solver method. The advantage of that approach is that the Stokes 
equations can be solved directly without using a pressure correction equation, as happens in many other 
approaches (e.g. SIMPLE). 
The LIR solver is very fast and very memory efficient for highly porous structures. For low porosity 
structures, the solver needs more iterations until the desired accuracy is reached than for highly porous 
structures. Here, the convergence speed depends on the complexity and inhomogeneity of the pore 
space. The runtime per iteration is very low due to the small number of cells. Thus, the solver is also 
fast and very memory efficient for low porosity structures. The convergence of the solver can be 
increased significantly by two methods: 



 

• Successive Over-Relaxation (SOR) instead of Gauß-Seidel algorithm  

• Multigrid methods which make use of coarser grids to reduce low-frequency residuals 
Limitations of that approach are the modelling of very fast flows with high Reynolds numbers and 
emerging turbulence and boundary layers. Moreover, modelling of slip-boundary conditions is also very 
difficult. However, these limitations apply to all methods that use voxel grids. 
Similar to the EJ formalism, the LIR formalism also allows to solve the Poisson equation (stationary heat 
equation). Conductivities at cell faces are computed by harmonic averaging of conductivities. Here, 
temperature (or electric potential) live at the cell center and two flux variables discretize the two one-
sided limits at the center of the cell surface. 

2.4 Lippmann Schwinger for Mechanics Simulations 

In the previous sections, we discussed three different approaches to solve the (Navier-)Stokes(-
Brinkman) equations. Two of them can also be used to solve conduction equations. In this section, we 
present the basic idea of a method that is used for linear and non-linear structural mechanics 
simulations. 
For a uniform macroscopic strain 𝑆, we solve the boundary value problem (BVP): 

∇ ⋅ 𝜎 = 0 
𝜎 = 𝐶: 𝜖 

2𝜖 = 2𝑆 + ∇𝑢∗ + (∇𝑢∗)𝑇 

Equilibrium of stress 
Hooke’s law 
 

(3) 

for the stress field 𝜎, strain field 𝜖, and the displacement field 𝑢∗. The BVP or equations of linear elasticity 
consists of the elastic equilibrium equation, Hooke’s law, and periodic boundary conditions. By 
introducing a reference material of homogeneous stiffness 𝐶0, the BVP can be transformed into the 
strain-based Lippmann-Schwinger equation, implemented in the FeelMath Solver 

(𝐼 + 𝐵𝜖)𝜖 = ϵ +  Γ0 ∗ ((𝐶 − 𝐶0): 𝜖) = 𝐸 Lippmann-Schwinger equation (4) 

Fast Fourier transforms allows to solve the convolution with the Green’s operator Γ0 [12]. The Lippmann-
Schwinger equation can also be formulated with respect of stress instead of strain. These equations 
can iteratively be solved using the Neumann series expansion, the so-called basis scheme. Instead of 
using the Neumann series expansion, Krylov subspace methods can be applied to accelerate the 
convergence of the method but requiring more memory. The formulation allows to handle linear and 
non-linear (i.e. replacing Hooke’s law with a non-linear formulation) material laws as well as isotropic, 
transverse-isotropic, orthotropic, or anisotropic constituent materials. 
Similar to the flow solvers, a staggered grid is used to discretize displacement, strain, and stress 
variables [13]. That is, the x-displacements live on x-faces, the y-displacements live on y-faces, and the 
z-displacements lives on the z-faces of the voxels. The diagonal entries of the strain and stress tensors 
live on the voxel center, the xy-entries live on the center of the z-edges, the yz-entries live on the center 
of the x-edges, and the xz-entries live on the center of the y-edges of the voxels. 
The number of iterations that is required until convergence of the stiffness depends on the largest phase 
contrast 𝜌 in the structure and the solution scheme. If the basic scheme with Neumann series 
approximation is used, then the number of iterations grows linearly with 𝜌. For accelerated schemes 

where Krylov subspace methods are used, the number of iterations grows with √𝜌.  

For the computation of compression dependent properties, the displacement field 𝑢∗ used to predict a 
compressed structure. The voxels of the original image are moved along the displacement field and cut 
with a reduced voxel image. The result of that procedure is a gray-value image where a global threshold 
is used to perform a segmentation of the different phases. The threshold is chosen in FeelMath such 
that either mass or volume is preserved.  

2.5 Pore Morphology methods for Two-Phase Flow Simulations 

The EJ, SIMPLE-FFT, and LIR methods solve the discretized single-phase (Navier-)Stokes(-Brinkman) 
equations. As post-processing step, the methods yield the absolute permeability of porous media. 
However, in many application areas, researchers are interested in saturation-depended properties such 
as relative permeability. For relative permeability, we must solve two-phase flow equations instead of 
single-phase flow equations. In these flow regimes, capillary forces caused by surface tension and 
capillary pressure are often dominating compared to viscous forces, i.e. capillary number is low. The 
solution of these two-phase flow equations is very challenging, and runtimes are very high. Here, we 
present an alternative approach. 
The pore morphology method [14], also known as maximum inscribed spheres [15], predicts the 
distribution of a wetting phase (WP) and a non-wetting phase (NWP) inside a porous medium. The 



 

method distributes two fluids by using morphological operations rather than solving partial differential 
equations. There are two possible scenarios:  

• Drainage:  the WP is drained from the structure and gets displaced by the NWP 

• Imbibition: the WP imbibes the structure and displaces the NWP. 

For drainage, it can be envisioned that spheres are pushed into the structure and placed in the pore 
space where the pore size is greater than a certain radius. The radius is decreased in an iterative 
process and this corresponds to an increase of the capillary pressure. The superposition of all spheres 
represents the NWP. The pore morphology method achieves this placement of spheres by dilation and 
erosion processes of the solid phase with the pore space. Additional connectivity checks [16] with 
respect to NWP and WP reservoirs can be used to increase the validity of the distributions. These 
connectivity checks allow the algorithm to introduce residual phases where parts of the NWP are trapped 
and cannot leave the simulated domain.  
The output of the algorithm is a finite sequence of quasi-stationary states. Each state is a 3D image 
again that encodes the solid phase, WP, and NWP. As post-processing, the Young-Laplace equation 
based on the radii of the inscribed spheres and the interfacial tension predicts the capillary pressure 

𝑝𝑐 = 2
𝛾

𝑟
𝑐𝑜𝑠𝛼 Young-Laplace equation (5) 

with capillary pressure 𝑝𝑐, surface tension 𝛾, pore radius 𝑟, and contact angle 𝛼. The method was 
extended by Schulz et al. [17] to handle multiple contact angles within the same structure. This can be 
achieved by using different radii for the dilation process but a single radius for the erosion process. It is 
also possible to simulate hysteresis processes where drainage and imbibition happen in series. The 
highest capillary pressure that can be simulated depends on the voxel length of the structure. One of 
the current limitations of these methods is that mixed wettability cannot be simulated. Mixed wettability 
means that a fluid is wetting on one material and non-wetting on another material within the same 
simulated domain.  
The computation of relative permeability is done with the sequence of quasi-stationary states. For 
relative permeability of the WP, for instance, we solve a single-phase flow inside the WP and treat the 
interface between WP and NWP as immobile no-slip interface. 
 

3 Application examples 

In this section, we present application areas and refer to literature where the above methods have been 
used. Each application area involves distinct media and exhibits different numerical challenges.  

3.1 Filtration 

Filters are essential in industry and in everyday life, to preserve machine functionality and for protection 
against toxic and allergenic substances. The demands on filter efficiency, selectivity, capacity, and filter 
lifetime increase constantly and highly specialized solutions are needed for every filtration application. 
Simulations help filter media makers and filter manufacturers understand and productively improve 
existing filter materials. Important filter characteristics are: 

• initial pressure drop: pressure drop between inlet and outlet of a clean filter, 

• filter efficiency:  quotient of captured particles over total particles, 

• filter life-time:  filtration time until a certain pressure-drop increase is reached, 

• filter capacity:  mass of particles that can be deposited inside the filter 

Many filter media are fibrous in nature and their properties depend on media thickness, fiber diameter, 
fiber orientation, and pore size distributions. 
The permeability, flow resistivity and initial pressure drop can be computed with the EJ, SIMPLE-FFT, 
or LIR solvers. Based on flow resistivity, even the frequency-dependent acoustic absorption of the 
fibrous media can be obtained [18]. The filtration process happens in two stages: depth filtration, with 
particles being deposited inside the filter, and later cake filtration, with particles being deposited on top 
of the filter (see Fig. 2). The filtration process is simulated by a Lagrangian formulation of particle 
transport [19]. First, a flow field is computed. Second, particles start from the inlet and move due to their 
own mass, the friction with the fluid and even Brownian motion, and may be captured on the fibers or 
on previously deposited particles. These two steps are performed in sequence to ultimately clog the 
filter. Electrostatic forces can be considered using the negative gradient of a computed potential field 
[20]. The filter efficiency, life-time, and capacity are obtained as post-processing of a filtration simulation 
with good agreement compared to measurements [21]. Particle diameters usually span multiple length 
scales. Particles much larger than a voxel are represented as empty-solid model and particles much 
smaller than a voxel are modelled by a homogeneous porous media approach [22]. 



 

 

3.2 Personal care materials 

Many personal care products partly consist of highly porous fiber material. For example, modern diapers 
are high-tech products consisting of several functional nonwoven and superabsorbent polymer layers. 
The nonwoven layers must be highly permeable so that fluids can pass through fast and reach the 
superabsorbent polymer layers. In addition, the permeability changes under mechanical loads. 
With the LIR and Explicit Jump methods, absolute permeability is predicted fast and precisely [23]. The 
pore morphology method allows to predict drainage and imbibition capillary pressure curves that match 
laboratory measurements. The mechanical deformation of these nonwoven layers is effectively 
predicted with the Lippmann-Schwinger methods in the FeelMath solver. 

3.3 Digital Rock Physics 

Digital rock physics (DRP), i.e. the determination of physical rock properties by performing numerical 
simulations on 3D scans of rock samples, represents an innovative technique that reduces time and 
cost compared to conventional laboratory experiments. DRP can be used as a complementary 
technique to these experiments, also serving as a quality assurance tool of the experiments and vice 
versa. Besides the increase in efficiency, DRP also allows insights into the actual processes taking place 
in the samples and is considered a game changer for the Oil and Gas industry. 
One of the first steps in a simulation workflow is the image acquisition, processing, and segmentation 
to create a digital rock model [24]. These steps are crucial and must be done very carefully. Researchers 
and petroleum engineers are often interested in porosity, pore-body and pore-throat size distributions, 
tortuosity, absolute and relative permeability, electrical conductivity, stiffness, and compression-
dependent properties. 

 
The porosity is often below 20%, pore networks are complex, and flow percolation paths can be narrow. 
Fig. 3 shows the flow field inside such a complex Berea sandstone. Properties computed by different 
solvers may deviate up to 50% depending on the discretization, boundary conditions, or stopping criteria 

   
Fig. 2: CT-scan and segmented 3D model of fibrous filter media (left). Stokes flow field through a filter media 
(center). Captured particles on top and inside of a filter media (right). 

   
Fig. 3: CT-scan of a Berea sandstone (left). Stokes flow field through a segmented Berea sandstone (center). 
Adaptive grid visualization of the LIR-Stokes solver (right). 



 

[25]. The EJ, SimpleFFT, and LIR flow solvers show a very good performance in a benchmark study 
with six other solvers [26]. The adaptive grid of the LIR solver allows to predict permeability on very 
large rock models with more than 5 billion voxels [27]. Computed capillary pressure curves of the pore 
morphology method and computed relative permeabilities agree with measurements [28]. 

3.4 Battery cathode materials 

The development of new battery materials and designs has become crucial in recent years. 
Electromobility is a worldwide growing trend bringing heavy demands on modern batteries. Batteries 
should have high capacity, low charging time, be safe to use, and sustain a long-life cycle. These 
requirements are hard to satisfy all at once. 
A lithium-ion battery is built with a cathode side and an anode side with a separator between them. The 
cathode and anode consist of active material that hosts lithium atoms. The active materials are 
embedded in binder material and carbon black with high electric conductivity. The pore space is filled 
with electrolyte which is diffusive for lithium ions. During battery charging, lithium atoms leave the active 
material while losing an electron and turning into lithium ions (Li+). They travel through the electrolyte 
and the separator, from the cathode to the anode side. The electrons (e-) also travel from the cathode 
to the anode side but through the binder and the surrounding electric circuit. Then, lithium ions combine 
with the electrons and the resulting lithium atoms enter the active material on the anode side. 
In an ideal battery, the amount of binder and its distribution provides a very high electric conductivity 
while leaving enough space for the electrolyte with a high diffusivity. The conductivity, diffusivity, and 
tortuosity are properties predicted using the Explicit Jump or LIR methods [29]. During battery charging, 
active materials grow on the anode side and shrink on the cathode side. Subsequent internal mechanical 
stress is predicted using the Lippmann-Schwinger methods [30]. The simulation workflow shown in Fig. 
4 has similarities with the DRP workflow. 

3.5 Gas Diffusion Layers (GDL) 

Fuel cells are another promising technology used in automotive industry to convert chemical energy into 
electricity through electrochemical reactions of hydrogen and oxygen. The structure of a fuel cell has 
similarities to a battery: anode side, a separator, and a cathode side. The GDL is a nonwoven porous 
structure made of carbon fibers that plays an important role for the transport of reactants and products 
in the anode and cathode side. Hydrogen comes from the anode side, loses its electron and travels as 
hydrogen-ion through the separator to the cathode side. The electrons travel through the conducting 
carbon fiber and the surrounding electric circuit to the cathode side. Hydrogen-ions, electrons and 
oxygen merge to water and heat at the cathode side. 
Important properties of GDL are the distribution of water, capillary pressure, relative permeability of 
water, gas diffusivity, the electrical and thermal conductivity, and its behavior under mechanical 

 
Fig. 4: Workflow for battery simulation starting from image acquisition, image processing, segmentation, and 
prediction of properties. 



 

compression [31]. The EJ and LIR conduction solvers predict the gas diffusivity and electric conductivity 
whereas the EJ, SIMPLE-FFT, and LIR stokes flow solvers predict the absolute permeability in 
agreement with measurements for different levels of compression [32]. The fibers of a GDL can be 
hydrophilic or hydrophobic depending on their coating, e.g. under Teflon treatment. The distribution of 
water and the capillary pressure curves can be predicted with the pore morphology methods for both 
cases [33]. The water acts as a barrier to the gas diffusion process. The computed distribution of water 
allows then to compute relative permeabilities, as well as relative gas diffusivities [34].  Thermal 
management is also one of the crucial topics in fuel cells, especially in GDL. With the conduction solvers, 
it is possible to predict thermal conductivity [35]. 

3.6 Fiber Reinforced Composites 

Composite materials and digital material engineering of composites are essential in current component 
development to improve the functionality and lightweight design in automotive and other industries, and 
in many industrial applications. The simulation tool’s ability to create realistic representative 
microstructure models and to determine their physical material properties, helps in quicken product 
development profitably. Lippmann-Schwinger methods and the FeelMath solver are especially suited 
for this application because they allow a fast and accurate prediction of the full mechanical stiffness 
tensor, as well as elastic moduli, which agrees with measurements [36]. With non-linear material models 
it is possible to simulate the evolution of deformation and damage within microstructures [37]. 
 

4 Conclusions 

The presented numerical methods predict flow, conduction, and mechanical properties with high 
agreement to experimental measurements. The methods are highly optimized and designed to work 
directly on 3D images that come from µCT or FIB-SEM devices. Computed physical properties help 
engineers and researchers to understand natural materials and optimize man-made materials on their 
way to improve processes or material development. 
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