Object Identification on Micro-CT Scans with GeoDict

- Andreas Grießer
- Dr. Christian Wagner

Math2Market GmbH

GeoDict

Development of materials by Digital Material Design

ImportGeo

FiberGeo

PaperGeo

GrainGeo

FoamGeo

WeaveGeo

GridGeo

PleatGeo

ExportGeo

PoroDict

MatDict

ConductoDict

DiffuDict

ElastoDict

AcoustoDict

AddiDict

FlowDict

FilterDict

SatuDict

Machine Learning based Micro-CT analysis

GeoDict for geometric analysis:

- Existing methods to measure
 - Fiber diameter
 - Fiber orientation
 - Pore size distributions
 - **...**
- New approach:
 - Machine Learning based geometric analysis to obtain more measurements out of complex micro structures

Micro CT-Scan of Gas Diffusion Layer

- Micro CT-Scan of a Gas Diffusion Layer
- 1.3µm voxel resolution
- Binder and fibers can not be directly segmented

Overview: Supervised Deep Learning

- Neural network: Network of artificial neurons
- Input X, Output Y
 - X and Y be anything: values, vectors, images...
- Supervised learning means we give many (X,Y) examples
 - The network then learns to predict Y from X
 - Problem: It needs a lot of training examples (> 100000)

Generating training data

- Solution: Use GeoDict's material modelling capabilties to generate training data
 - For training we generated 18 structures
 - Varying porosity and binder volume fraction
 - This corresponds to ~800 million training data points

Machine Learning to detect contact Voxels

- Seperating individual fibers allows to get more precise statistics out of micro-CT images
 - Fiber length
 - Fiber curvature
 - Fiber shape
- We deploy the same technic as before to identify fiber contact points

Fiber identification in a GFRP

Thank You!

Visit us @ our booth on the ground floor and @ www.geodict.com

