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WHY AM I HERE?
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 I am a Mathematician and CEO of a company (Math2Market), not a 
ceramics guy

 Math2Market makes software GeoDict, the digital material laboratory
 Which creates geometric microstructure models
 Can analyze the models for geometric properties
 Can compute processes and material properties on these models

 This software has been used successfully for many different materials, 
and recently (by Willi Pabst and co-workers) also for ceramic materials
 I think there is more potential to collaborate on ceramics, but am not 

an expert
 And hence would like to introduce our capabilities to this audience



OUR PURPOSE AS A COMPANY RATHER THAN
AN ACADEMIC INSTITUTION
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 In everything that follows, 

 Our intention is to make the technologies available to the audience
 to speed up your modelling of processes and materials
 to help you design new materials and processes
 to understand the outcomes of real experiments

 In the best sense of reproducible research
 by keeping software versions and input data with the results
 by including the post-processing options used

 While making a living for ourselves

 If you find you’d like to know more after this presentation, talk to me 
after my presentation or visit our web site at www.geodict.com. 

http://www.geodict.com/


MODELLING OF STRUCTURAL MATERIALS
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Import of image data Generation of Composites Generation of Foams Crystalline materials

 µCT-scans, FIB-SEMs
 Slice alignment 
 Curtain filter (FIB-SEM)
 Artifact Removal (μCT)
 OTSU-thresholding
 Median and mean filter
 Non-local means filter
 Gauss filter
 User defined filters

 Plain weaves
 Twill weaves
 Satin weaves
 Customized weaves
 Needle mats
 Short fibers
 Long fibers
 Non crimped fabrics

 Random foams
 Kelvin foams
 Closed cell foams
 Open cell foams
 Cell size distributions
 Foam beads
 Complex foam 

structures

 Metals and ceramics
 Generation of grains 
 Different orientation of 

each grain 
 Fiber reinforced 

ceramics 
 Fiber reinforced metals
 Hybrid materials



DIGITAL EXPERIMENTS ON CT-SCANS AND
MICROSTRUCTURES
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Geometrical Parameters Flow & Conduction 
Parameters Mechanical Parameters Large Deformation, 

Damage & Failure

 Volume fractions
 Fibers, grains, pores
 Object diameters
 Object identification
 Object orientation
 Object size 

distributions

 Absolute permeability
 Thermal conductivity
 Electrical conductivity
 Tortuosity
 Diffusivity

 Elastic moduli
 Stiffness tensor
 Full anisotropy
 Thermal expansion
 Stress-strain curves

 Hyperelastic materials
 Plastic deformations
 Viscous effects
 Damage and failure 
 Structure change
 Fatigue
 Buckling of cell walls
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GEODICT® SOLUTIONS FOR …

FILTRATION
For a clean 
environment

ELECTROCHEMISTRY For electromobility

STRUCTURAL
MATERIALS

For lightweight 
applications

DIGITAL ROCK
PHYSICS

For efficient energy 
production
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SELECTED CLIENTS
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WHAT WILL YOU SEE?
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 Steps to develop a patent for a new Diesel Particulate Filter ceramic.

 Steps to develop a new washcoat for Three Way catalysts.

 Steps to validate and derive new cross-property relationships (and 
publish them).

 Ideas, what has been simulated on other materials and could be done 
on ceramics, too.



INTRODUCTION TO DIESEL PARTICULATE
FILTERS (DPF)
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Goal:

Design & improve Diesel/Gasoline Particulate 
Filters (DPF/GPF) through fast simulations.

 lower pressure drop

 higher filter efficiency

 improved regeneration

Key factor governing performance of the DPF:  

Ceramic filter media



TWO SOURCES OF PRESSURE LOSS IN DPF
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1. Across the ceramic micro structure

2. Along the channels due to capillary forces 

 We simulate 
them separately.

 In both cases, 
we simulate the 
loading of an 
initially clean filter.

 After modeling the
ceramic and

 After modeling the honeycomb.
2. 1.

567 µm



PROCEDURE
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Simulate pressure loss along 
the channels

2

Simulate pressure loss across 
the wall

1



MICRO-STRUCTURE
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Image acquisition: µ-CT Modelling with GeoDict
structure generator modules, 
e.g. GrainGeo

+ Allows simulations on real filter 
structures

− Modification of the filter structure is not 
possible only through µ-CT images



MICRO-STRUCTURE MODELS WITH
GRAINGEO MODULE
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 Modelling of packed beds of spheres.

 Modelling of ceramics in different stages of sintering.

 Modelling of catalyst layer and microporous layer in PEM fuel cells.

 Modelling of lithium ion cathodes and other battery materials.

 Modelling of rocks- like sandstone.

 Modelling of sphere packings with very high packing density.



BINARIZED PMS IMAGES
FROM POLISHED MICROGRAPH SECTIONS AND
MODELED SINTERED CERAMICS

© Math2Market GmbH-- 14 --

PMSs

Models



CERAMIC MODEL CHARACTERIZATION
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Characterizing the ceramic with 
PoroDict

Evaluation of the pore size distribution 
& percolation path 



CERAMIC MODEL CHARACTERIZATION
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Characterizing the ceramic with 
PoroDict

Evaluation of the pore size distribution 
& percolation path 

Maximum particle 
diameter [µm] Path length [µm]

9.94 929.1



CERAMIC MODEL CHARACTERIZATION
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Characterizing the ceramic with 
FlowDict

 Domain size: 256x256x630 Voxels

 Voxel length: 0.9 µm

 Ceramic porosity: 48.7 %

 Pressure drop is 252.8 Pa at mean 
air flow velocity of 0.04 m/s

 Flow resistivity: 1.115e+07 
kg/(m3s)

 Permeability: 1.63e-12 m2



MEASURED POROSITIES & PERMEABILITIES
OF REAL CERAMICS VS MODELED POROSITIES & SIMULATED
PERMEABILITIES ON MODELED CERAMICS
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Simulation

Measurement



FILTER LIFE TIME SIMULATION WITH
FILTERDICT-MEDIA
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1. Model filter 2. Compute flow field 3. Track particles

4. Deposit particles 5. Update flow field 6. Repeat ...









ANALYSIS OF CERMAIC FILTER PERFORMANCE
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Analysis of the filtration 
performance with FilterDict-
Media

 Simulation of soot particles 
deposition.

 Evaluation of fractional 
filter efficiency.

 Evaluation of pressure drop 
in depth filtration & cake 
filtration regimes.



EXPERIMENTAL AND SIMULATED PRESSURE
DROP EVOLUTION
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 Error bars induced by 
5 measurements and 
5 different realizations 
of the digital 
structure. 

 Match achieved by 
introducing different 
parameters
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 & 𝜎𝜎 𝑓𝑓 for depth 
& cake filtration.

L. Cheng et al., WFC 11, 2012.



SPATIAL PARTICLES DEPOSITION OVER TIME
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REDUCED PRESSURE DROP OVER TIME

After fast initial pressure drop increase         (slope s1, depth filtration phase) 
follows long slower pressure drop increase  (slope s2, cake filtration phase)

 Matched experiment with simulations

 Shortened depth phase to lower pressure drop during cake phase

 Fraunhofer IKTS manufactured ceramic, experiment matched simulations, 
and patent was granted: Particulate filter, No. DE102012220181 A1

s2s1

x

depth filtration

cake filtration
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DEVELOPMENT OF LOW PRESSURE AND
HIGH PERFORMANCE GPF CATALYST
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Tanaka, A., Miyoshi, N., and Sato, A., “Development of Low 
Pressure and High Performance GPF Catalyst,” SAE Technical
Paper 2018-01-1261, 2018, doi:10.4271/2018-01-1261.



IDEA OF THE ACHIEVEMENT:
ANALYSIS OF PORES IN THE WASHCOAT
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Tanaka, A., Miyoshi, N., and Sato, A., “Development of Low 
Pressure and High Performance GPF Catalyst,” SAE Technical
Paper 2018-01-1261, 2018, doi:10.4271/2018-01-1261.



PROCEDURE
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Simulate pressure loss across the wall1

Simulate pressure loss along the channels2



MODELING & SIMULATION AT UNRESOLVED
MEDIA SCALE
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USING MODELS TO DERIVE CROSS-PROPERTY
RELATIONS
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 By cross-property relations one predicts a property that is 
more difficult to measure by one that is easier to measure. 
For example, one may predict mechanical stiffness from 
knowledge of thermal conductivity.

 In the work with Pabst, Uhlířová and Gregorová, 3D periodic 
models with desired characteristics are created and the 
mechanical and thermal properties are computed. Cross-
property shortcut formulas can thus be validated.

 Once the numerical method is established against 
experiments, it provides a wealth of numerical experimental 
data at much lower cost in time and materials than real 
experiments.

 It may lead to a stream of publications by the ceramic 
h  



EXAMPLE: POROSITY STUDY 1
CLOSED-CELL KELVIN FOAMS
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EXAMPLE: POROSITY STUDY 2
CLOSED-CELL RANDOM FOAMS
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EXAMPLE: POROSITY STUDY 3 KELVIN-CELL
STRUT-BASED MICROSTRUCTURES
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EXAMPLE: POROSITY STUDY 4
RANDOM STRUT-BASED MICROSTRUCTURES
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EXAMPLE: POROSITY STUDY 5
INVERSE KELVIN FOAM
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EXAMPLE: POROSITY STUDY 6
RANDOM FOAM
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SIMULATED RELATIVE THERMAL
CONDUCTIVITY AS FUNCTION OF POROSITY
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SIMULATED RELATIVE YOUNG’S MODULUS
AS FUNCTION OF POROSITY
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PUBLICATIONS BASED ON THIS SYNERGY
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 Tereza Uhlířová, Willi Pabst, Conductivity and Young's modulus of porous metamaterials based on Gibson-Ashby cells, 
Scripta Materialia, Volume 159, 2019, Pages 1-4, https://doi.org/10.1016/j.scriptamat.2018.09.005.

 Tereza Uhlířová, Willi Pabst, Thermal conductivity and Young's modulus of cubic-cell metamaterials, Ceramics 
International, Volume 45, Issue 1, 2019, Pages 954-962, https://doi.org/10.1016/j.ceramint.2018.09.271.

 Tereza Uhlířová, Vojtěch Nečina, Willi Pabst, Modeling of Young’s modulus and thermal conductivity evolution of partially 
sintered alumina ceramics with pore shape changes from concave to convex, Journal of the European Ceramic Society, 
Volume 38, Issue 8, 2018, Pages 3004-3011, https://doi.org/10.1016/j.jeurceramsoc.2017.12.033.

 Willi Pabst, Tereza Uhlířová, Eva Gregorová, Shear and bulk moduli of isotropic porous and cellular alumina ceramics 
predicted from thermal conductivity via cross-property relations, Ceramics International, Volume 44, Issue 7, 2018, Pages 
8100-8108, https://doi.org/10.1016/j.ceramint.2018.01.254.

 Willi Pabst, Tereza Uhlířová, Eva Gregorová, Andreas Wiegmann, Relative Young’s modulus and thermal conductivity of 
isotropic porous ceramics with randomly oriented spheroidal pores – Model-based relations, cross-property predictions 
and numerical calculations, Journal of the European Ceramic Society, Volume 38, Issue 11, 2018, Pages 4026-4034,  
https://doi.org/10.1016/j.jeurceramsoc.2018.04.051.

 Willi Pabst, Tereza Uhlířová, Eva Gregorová, Andreas Wiegmann, Young’s modulus and thermal conductivity of closed-
cell, open-cell and inverse ceramic foams – model-based predictions, cross-property predictions and numerical 
calculations, Journal of the European Ceramic Society, Volume 38, Issue 6, 2018, Pages 2570-2578,, 
https://doi.org/10.1016/j.jeurceramsoc.2018.01.019.

 Willi Pabst, Tereza Uhlířová, Eva Gregorová, Andreas Wiegmann, Young’s modulus and thermal conductivity of model 
materials with convex or concave pores – from analytical predictions to numerical results, Journal of the European 
Ceramic Society, Volume 38, Issue 7, 2018, Pages 2694-2707, https://doi.org/10.1016/j.jeurceramsoc.2018.01.040.

https://doi.org/10.1016/j.ceramint.2018.09.271
https://doi.org/10.1016/j.jeurceramsoc.2017.12.033
https://doi.org/10.1016/j.ceramint.2018.01.254
https://doi.org/10.1016/j.jeurceramsoc.2018.04.051
https://doi.org/10.1016/j.jeurceramsoc.2018.01.019
https://doi.org/10.1016/j.jeurceramsoc.2018.01.040


CONCLUSION & OUTLOOK FOR CERAMICS
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 In the knowledgeable hands of ceramics researchers, 
modelling and simulating properties takes only minutes
 And complete studies can be conducted using far less time and 

money than real studies would
 In the case of the previous slides, relationships between thermal 

conductivity and Young’s modulus can be refuted and confirmed.

 Maybe other questions can be studied on ceramic models 
than cross-property-relations?
 Modelling of sub-structures
 Large deformations of ceramics
 Mineral dissolution and precipitation in ceramics
 Influence of radiation on effective thermal conductivity 



MODELLING OF MARTENSITE
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 Martensite is formed when faced centered austenite is 
quenched and transforms into a highly strained body-
centered tetragonal form. 

 The remaining austenite and the martensite have different 
mechanical properties 
 Properties of microstructure can be simulated.

 Martensite is available in GrainGeo.
 In GeoDict 2020, grain orientations can be defined in the GUI.

https://commons.wikimedia.org/wiki/File:20180308_Martensite.jpg (CC BY-SA 4.0)



COMPRESSION OF GENERATED FOAMS
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 Foam generated with FoamGeo

 80 % compression (on deformed geometry)

 Buckling of cell walls can be observed

 Characteristic stress strain curve

 Constant positive pore pressure
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III. Densification
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Theoretical stress strain curve

I II III

Stress-strain curve calculated with GeoDict









COMPARISON TO EXPERIMENT
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Scope: Determination of thermal conductivity of foams and comparison to 
experimental data1

Input: Solid volume fraction of open cell polyurethane (PU) foam, physical properties 
of PU and air

Result: Good compliance with experiments if radiation is taken into account

[1] J-W. Wu et al.. (1999) Thermal conductivity of polyurethane foams. Int. J. Heat Mass Transfer, 42, 2211-2217
[2] Tao, W.-H., Hsu, H.-C., Chang, C.-C., Hsu, C.-L., & Lin, Y.-S. (2001). Measurement and Prediction of Thermal Conductivity of Open 
Cell Rigid Polyurethane Foam. Journal of Cellular Plastics, 37(4), 310–332.
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Thermal conductivity by radiation 𝑘𝑘𝑟𝑟𝑟𝑟2: 

𝑘𝑘𝑟𝑟𝑟𝑟 =
16 � 𝜎𝜎 � 𝑇𝑇𝑚𝑚3

3(42.038𝜌𝜌𝑃𝑃𝑃𝑃𝑉𝑉𝑓𝑓 + 121.55)

𝜎𝜎: Stefan-Boltzmann constant
𝑇𝑇𝑚𝑚 : mean temperature
𝜌𝜌𝑃𝑃𝑃𝑃: density of PU
𝑉𝑉𝑓𝑓 : solid volume fraction
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SIMULATION OF MINERAL DISSOLUTION
OF A ROCK

© Math2Market GmbH

Simulation settings:
Domain: 1024x1024x1280 voxel
Average velocity: 0.01 m/s
pH value: 2.5
Simulation time: 250 s
Number of particles: ~60.000 /s






WHAT HAVE YOU SEEN?
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 Microstructure simulation software by mathematicians, 
physicists and computer scientists can be used to
 Create patent for DPF (with Fraunhofer IKTS)
 Create new washcoat for TWC (with Toyota Motor Comp)
 Create relevant publications (with Prague University)

 Do many more things that wait to be exploited for ceramic 
materials
 Large deformations
 Internal structures
 Radiation
 Dissolution / precipitation
 Etc. etc.



-- 45 --

THANK YOU FOR YOUR ATTENTION
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