

THE INFLUENCE OF SLIP FLOW ON FILTRATION SIMULATIONS ON THE NANO SCALE

FILTECH, October 22 – 24 | Cologne – Germany

<u>Liping Cheng</u>, Sven Linden, Mehdi Azimian, Andreas Wiegmann Math2Market GmbH, Kaiserslautern, Germany

SOME BACKGROUND INFORMATION

GEODICT

Math2Market GmbH

- creates and markets the scientific software GeoDict®.
- was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.
- is a privately-owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

- is a software tool to analyze and design the microstructure of porous media and composites.
- works on
 - μCT and FIB-SEM 3D images or
 - random geometric material models.

GEODICT

Why nanofiber?

- Higher initial & ongoing efficiency
- Lower pressure drop across the filtration media
- Less compressed air consumption required for pulse-jet cleaned dust collection systems
- Longer filter life
- Flexibility in filter configuration

Filtration media substrate material

Nanofibers

GEODICT

Why nanofiber?

Flow direction

[source: www.donaldson.com]

GEODICT

What is slip-flow?

GEODICT

What is slip-flow?

- Microfiber
 - Air molecules collide with the fiber and stick to the surface
 - They acquire the velocity of the microfiber plus Brownian motion
 - The motion of a continuum is the average of all the molecules in a volume element, which is zero here.
- Nanofiber
 - Only a fraction of the air molecules collide.
 - The remaining retain the bulk flow motion.
 - The continuum velocity near the nanofiber surface is not zero.
- slip flow results in
 - lower pressure drop for the flow through nanofiber than microfibers when the fiber length is equal.
 - improves the single fiber capture efficiency of small particles on the nanofibers

GEODICT® WORKFLOW: DIGITAL FILTER MEDIA DESIGN

ANALYZE

GEODICT

IMPORT

Model

DESIGN

Begin with an idea: a new material with ideal properties.

Design a material from scratch or import images from a real material to create a digital material model.

DIGITAL MATERIAL

Analyze geometric properties and compute physical properties of designed or real materials.

Extract statistical data to create a Digital Twin.

STATISTICAL MODEL

A Digital Twin is the statistical representation of the real material.

Modify the Digital Twin to create Digital Prototypes and begin the design process.

DIGITAL TWIN

Digital prototypes are easily and rapidly created.

Design, simulate, and predict in a loop to find the material with the desired properties.

DIGITAL PROTOTYPES

The materials of the future are within reach and we help you develop them faster.

THIS IS INNOVATION
THROUGH
SIMULATION.

FILTRATION SIMULATION

MODELLING OF NANOFIBER MEDIA FROM **SEM** IMAGE

GEODICT

Real Media (SEM)*

GeoDict 3D Model based on SEM

Voxel Length: 16 nm (GeoDict measured on SEM)

Fiber Diameter: $280 \text{ nm} \pm 40 \text{ nm}$ (GeoDict measured on SEM)

Size 2D: 720 x 480 Pixels

Orientation: Diag. (0.27, 0.73, 0.00)

Porosity: 82%

Size 3D: 720 x 480 x 328 Voxels

MODELLING OF NANOFIBER MEDIA FROM **SEM** IMAGE

SIMULATION OF SLIP FLOW AND FILTRATION FOR NANO-FIBROUS MEDIA

GEODICT

For Micro fiber:

$$-\mu\Delta\vec{u}+\nabla p=0$$
 (momentum balance)
$$\nabla\cdot\vec{u}=0 \text{ (mass conservation)}$$

$$\vec{u}=0 \text{ on } \Gamma \text{ (no-slip on fiber surfaces)}$$

$$P_{in}=P_{out}+c \text{ (pressure drop is given)}$$

 μ : fluid viscosity,

 \vec{u} : velocity, periodic,

p: pressure, periodic up to pressure drop in flow direction.

GEODICT

For Micro fiber:

 $-\mu\Delta\vec{u} + \nabla p = 0$ (momentum balance)

 $\nabla \cdot \vec{u} = 0$ (mass conservation)

 $\vec{u} = 0$ on Γ (no-slip on fiber surfaces)

 $P_{in} = P_{out} + c$ (pressure drop is given)

 μ : fluid viscosity,

 \vec{u} : velocity, periodic,

p: pressure, periodic up to pressure drop in flow direction.

For Nano fiber:

$$-\mu\Delta\vec{u} + \nabla p = 0$$
 (momentum balance)

 $\nabla \cdot \vec{u} = 0$ (mass conservation)

 $\vec{n} \cdot \vec{u} = 0$ on Γ (no flow into fibers)

 $\vec{t} \cdot \vec{u} = -\lambda \vec{n} \cdot \nabla \left(\vec{u} \cdot \vec{t} \right)$ on Γ (slip flow along fibers)

 $P_{in} = P_{out} + c$ (pressure drop is given)

 \vec{n} : normal direction to the fiber surface,

 λ : slip length,

 \vec{t} : any tangential direction with $\vec{t} \cdot \vec{n} = 0$.

GEODICT

Validation: Poiseuille flow

- No-slip boundary condition for channel in axial direction possible since 2001
- Slip boundary condition for channel in axial direction possible since 2008 or earlier

$$u = u' cos\theta$$

$$v = u' sin\theta$$

$$u\Big|_{x=0,y=0} = \frac{\lambda}{\cos\theta} \frac{\partial u}{\partial x}\Big|_{x=0,y=0} = \frac{\lambda}{\sin\theta} \frac{\partial u}{\partial y}\Big|_{x=0,y=0}$$

$$v\Big|_{x=0,y=0} = \frac{\lambda}{\cos\theta} \frac{\partial v}{\partial x}\Big|_{x=0,y=0} = \frac{\lambda}{\sin\theta} \frac{\partial v}{\partial y}\Big|_{x=0,y=0}$$

Velocity / (m/ **SIMULATION OF SLIP FLOW** Velocity / (m/s) Velocity / (m/s) 2.00e-3 2.00e-3 2.00e-3 0.0 Plot Range: No-slip max: 3.00e-3 max: 3.00e-3 0.0 min: 0.0 min: 0.0 Data Range: max: 1.69e-3 Data Range: max: 1.71e-3 Plot Range: min: 0.0 min: 0.0 max: 3.00e-3 min: 0.0 Data Range: Velocity / (m/s) Velocity / (m/s) max: 1.70e-3 Velocity / (m/ 2.00e-3 2.00e-3 0.0 2.00e-3 Plot Range: max: 3.00e-3 min: 0.0 Plot Range: max: 3.00e-3 min: 0.0 Data Range: Data Range: max: 3.38e-3 max: 3.38e-3 min: 0.0 Slip min : 0.0 0.0 Plot Range: max: 3.00e-3 min: 0.0 Data Range: **Validation I:** max: 3.36e-3 min: 0.0 **Planar Poiseuille flow** -- 19 --

COMPARISON OF VELOCITY DISTRIBUTION

GEODICT

Velocity / (m/s) 63.00e-3 — 50.00e-3 -40.00e-3 30.00e-3

20.00e-3 10.00e-3 0.0

No-slip

Slip

SIMULATION OF NANOFIBER FILTRATION

GEODICT

Settings of filter life-time single-pass simulations

Fluid	Air
Temperature	22 °C
Mean flow velocity	0.1 m/s
Flow	Darcy (Stokes)
Filtration duration	40 s
Particles	10 different particle size classes from 100 nm to 460 nm
Test dust concentration	1 g/m³
Particle density	2650 kg/m³
Particle shape	Spherical

SIMULATION OF NANOFIBER FILTRATION

GEODICT

Settings of filter life-time single-pass simulations

Fluid	Air
Temperature	22 °C
Mean flow velocity	0.1 m/s
Flow	Darcy (Stokes)
Filtration duration	40 s
Particles	10 different particle size classes from 100 nm to 460 nm
Test dust concentration	1 g/m³
Particle density	2650 kg/m³
Particle shape	Spherical

SUMMARY

GEODICT

- Slip flow plays an important role in nanofiber filtration.
- Slip boundary condition has been implemented in GeoDict.
- The slip flow effects in nanofiber filtration can be observed by comparing to no-slip flow.

OUTLOOKS

- To improve the automatic detecting of orientation of each fiber
- Extensive validation by comparing with experiments
- • • •

VISIT US AT HALL 11.1, BOOTH #A11

