

FILTRATION MODELING AND SIMULATION WITH GEODICT,

FROM FILTER MEDIA TO FILTER ELEMENT

FILTECH 2019 October 22.–24., 2019

Mehdi Azimian

Co-Authors: S. Linden, L. Cheng, C. Kühnle, A. Wiegmann

CONTENTS

1	Introduction
2	Simulation of slip flow and filtration through nano-fibrous media
3	Simulation of filters (complete filter with housing)
4	Simulation of cross-flow filtration

FILTER MEDIA AND FILTER ELEMENT

GEODICT

Filter

FILTER MEDIA SIMULATION

FILTER ELEMENT SIMULATION (IDENTIFICATION OF PARAMETERS)

GEODICT

Estimate max. particles packing density & max. flow resistivity

Particles deposited in/on pleated filter element

Simulation requires:

 f_{max} : max. particles packing density σ_{max} : corresponding flow resistivity

Particles deposited on a grid frame

high resolution simulation to identify: $f_{max} \& \sigma_{max}$ for <u>cake filtration</u>

Particles deposited through the micro-structure

high resolution simulation to approximate: $f_{max} \& \sigma_{max}$ for depth filtration

CONTENTS

- 1 Introduction
- 2 Simulation of slip flow and filtration through nano-fibrous media
- 3 Simulation of filters (complete filter with housing)
- 4 Simulation of cross-flow filtration

FLOW AND FILTRATION SIMULATION THROUGH NANO-FIBROUS MEDIA

SIMULATION OF SLIP FLOW AND FILTRATION FOR NANO-FIBROUS MEDIA

GEODICT

For microfiber

$$-\mu\Delta\vec{u} + \nabla p = 0$$
 (momentum balance)
 $\nabla \cdot \vec{u} = 0$ (mass conservation)
 $\vec{u} = 0$ on Γ (no-slip on fiber surfaces)
 $P_{in} = P_{out} + c$ (pressure drop is given)

 μ : fluid viscosity,

 $ec{u}$: velocity, periodic,

p: pressure, periodic up to pressure drop in flow direction.

SIMULATION OF SLIP FLOW AND FILTRATION FOR NANO-FIBROUS MEDIA

GEODICT

For microfiber

 $-\mu\Delta\vec{u} + \nabla p = 0$ (momentum balance)

 $\nabla \cdot \vec{u} = 0$ (mass conservation)

 $\vec{u} = 0$ on Γ (no-slip on fiber surfaces)

 $P_{in} = P_{out} + c$ (pressure drop is given)

 μ : fluid viscosity,

 $ec{u}$: velocity, periodic,

p: pressure, periodic up to pressure drop in flow direction.

For nanofiber

$$-\mu\Delta\vec{u} + \nabla p = 0$$
 (momentum balance)

 $\nabla \cdot \vec{u} = 0$ (mass conservation)

 $\vec{n} \cdot \vec{u} = 0$ on Γ (no flow into fibers)

 $\vec{t} \cdot \vec{u} = -\lambda \vec{n} \cdot \nabla \left(\vec{u} \cdot \vec{t} \right)$ on Γ (slip flow along fibers)

 $P_{in} = P_{out} + c$ (pressure drop is given)

 \vec{n} : normal direction to the fiber surface,

 λ : slip length,

 \vec{t} : any tangential direction with $\vec{t} \cdot \vec{n} = 0$.

MODELLING OF NANO-FIBROUS MEDIA FROM **SEM** IMAGE

Real media (SEM)*

GeoDict 3D model based on SEM

Voxel length	16 nm (measured on SEM with GeoDict)	Orientation	Diagonal (0.27, 0.73, 0.00)
Fiber diameter	280 nm ± 40 nm (measured on SEM with GeoDict)	Porosity	82%
Size 2D	720 x 480 Pixels	Size 3D	720 x 480 x 328 Voxels

COMPARISON OF VELOCITY DISTRIBUTION

COMPARISON OF FILTRATION SIMULATION RESULTS

GEODICT

Settings of filter life-time single-pass simulations

Fluid	Air
Temperature	22 °C
Mean flow velocity	0.1 m/s
Solver	Stokes (LIR)
Batches	Each batch 2 s, in total 20 batches (40 s filtration)
Particles	10 different particle size classes from 100 nm to 460 nm
Test dust concentration	1 g/m³
Particle density	2650 kg/m³
Particle shape	Spherical

15

20

Time / (s)

10

35

0.5

0.0

30

25

CONTENTS

- 1 Introduction
- 2 Simulation of slip flow and filtration through nano-fibrous media
- 3 Simulation of filters (complete filter with housing)
- 4 Simulation of cross-flow filtration

MODEL OF A FILTER **GEODICT**

Goals

- Import geometric model of a filter (ImportGeo-CAD, ProcessGeo, editing tools)
- Predict pressure drop, efficiency, and life-time for this filter (FilterDict-Element)

REVIEW OF FILTER IMPORT

ASSIGN CONSTITUENT MATERIALS AND PERMEABILITY

RUN THE FILTER FLOW SIMULATION

- Select Add-In/App → FilterDict for a predefined script
- Click Edit... for the **CompleteFilterFlowSimulation** predefined script
 - Set the Result File Name
 - Choose inlet material (ID 04) with inlet pressure / or mean flow rate at inlet
 - Choose outlet material (ID 05) with outlet pressure

FILTER FLOW SIMULATION RESULTS

GEODICT

Fr Sep 13 2019 (2020 Build 36420) Domain: 581 x 400 x 1237 Voxel: 500 µm Load Structure Results Input Map Log Map Post Map Flow Visualization Metadata Report Plots Map Volume flow rate: 0.5 l/s. Average flow velocity over 0.006558 m² through the inlet: 0.0762428 m/s. Pressure at the inlet material 4: 71151.1 Pa.

Pressure at the outlet material 5:0 Pa.

Pressure difference between inlet and outlet: 71151.1 Pa.

--- Iterations: 2950, Runtime: 418.398 s, Number of Cells: 2078569, Memory usage: 505.522 MB, and stopped successfully for error bound ---

FILTER FLOW SIMULATION RESULTS

FILTRATION SIMULATION SETTINGS

- Setup the FilterDict-Element Life-Time simulation parameters
- Choose inlet material (ID 04) as particle start position
- Choose outlet material (ID 05) as particle end position

FILTRATION SIMULATION SETTINGS

Change flow direction from "z" to "From Particle Inflow to Outflow".

FILTRATION SIMULATION

- Movement of particles can be animated
- Simulation and analysis of depth and cake filtration
- Particles are shown
 50 times larger
 here (for better
 visualization)

FILTRATION SIMULATION

- Particles are trapped inside a vortex
- Filter design not optimal
 - Increased pressure drop
 - Increased simulation runtime

CONTENTS

GEODICT

- 1 Introduction
- 2 Simulation of slip flow and filtration through nano-fibrous media
- 3 Simulation of filters (complete filter with housing)

4 Simulation of cross-flow filtration

CROSS-FLOW FILTRATION

GEODICT

- In cross-flow filtration particles travel tangentially across the surface of the filter rather than into the filter
 - Fluid with particles enters the filter element from one side
 - Flow is split in two directions due to a pressure difference before and after a porous membrane
 - Particles get deposited on top of the porous membrane

GeoDict2020 allows to set up and perform cross flow simulations easily!

Example of a simple cross-flow filtration setup with an inflow region at the top-left and two pressure outflow boundaries at the top-right and bottom-right

REVIEW OF STRUCTURE PREPARATION

GEODICT

The structure preparation is ready and the simulation setup can be started.

Material Information:
ID 00: Air [invis.]
ID 01: Casing
ID 02: Air in Porous [Membrane]
ID 03: Air [Inlet]
ID 04: Air [Upper Outlet]
ID 05: Air [Lower Outlet]

Domain size: 684 x 176 x 128 voxels

Voxel length: 10 µm

RUN A CROSS-FLOW SIMULATION WITH FLOWDICT GEODICT

- Select Add-In/App → FilterDict for a predefined script
- Click Edit... for the CrossFlowSimulation predefined script
 - Set the Result File Name
 - Choose inlet material (ID 03) with inlet pressure / or mean flow rate at inlet
 - Choose outlet material (ID 04 and ID05) with outlet pressures

CROSS-FLOW SIMULATION RESULTS

CROSS-FLOW SIMULATION RESULTS

CROSS-FLOW FILTRATION SIMULATION

THANK YOU FOR YOUR ATTENTION.

