

OPTIMIZING THE PERFORMANCE OF BATTERIES USING DIGITAL MATERIAL ENGINEERING

Interpore, May 9, 2019

Erik Glatt, Fabian Biebl, Ilona Glatt, Christian Wagner, Andreas Wiegmann

OUTLINE

1 Introduction

2 ImportGeo: import of cathode FIB-SEM image

GrainFind: segmentation of the two active materials

BatteryDict: battery charging simulations

5 Outlook

WHO WE ARE

Math2Market GmbH

- creates and markets the scientific software GeoDict®.
- was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.
- is a privately owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

- is a software tool to analyze and design the microstructure of porous media and composites.
- works on
 - μCT and FIB-SEM 3D images or
 - random geometric material models.

DIGITAL MATERIAL ENGINEERING WITH GEODICT®

SCHEMATIC OF A LI-ION BATTERY

CATHODE WITH TWO ACTIVE MATERIALS

WELL ORGANIZED TRANSPORT IS KEY

Infrastructure in Ludwigshafen Source: https://www.stuttgarter-zeitung.de

Like in a city, certain transportation pathways are reserved for certain species

Dissolved Li ⁺ moves through the electrolyte	Ships sail on rivers
Lithium moves through the active material	Pedestrians walk on the sidewalk
e- move through the carbon black + binder	Cars drive on streets

DIGITAL BATTERY DEVELOPMENT

The development of new electrode microstructures is a **costly and time-consuming** process.

The workflow using the **GeoDict**[®] software significantly **reduces the development process**:

-- 8 -- © Math2Market GmbH

OUTLINE

1 Introduction

ImportGeo: import of cathode FIB-SEM image

GrainFind: segmentation of the two active materials

4 BatteryDict: battery charging simulations

5 Outlook

FIB-SEM SCANS OF CATHODE

FIB-SEM IMAGE ALIGNMENT

IMAGE FILTERING: STREAK REMOVAL & NLM FILTER

- Streak Removal in GeoDict 2019
 - Fills in strong streaks but leaves some shadows
 - Still experimental
 - In combination with good filtering (non-local means) possibly better segmentations

SEGMENTED IMAGE FIRST STEP

Cathode sample provided by KIT.

NCA: Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO₂)

LCO: Lithium Cobalt Oxide (LiCoO₂)

OUTLINE

1 Introduction

2 ImportGeo: import of cathode FIB-SEM image

GrainFind: segmentation of the two active materials

4 BatteryDict: battery charging simulations

5 Outlook

SEPARATION OF THE ACTIVE MATERIALS

- Why separate LCO and NCA?
 - Different charging behavior of LCO and NCA
 - Need correct materials for accurate charging simulation
- Why no direct segmentation of LCO and NCA via global thresholding?
 - Gray values are too similar

GRAIN IDENTIFICATION

-- 16 -- © Math2Market GmbH

MATERIAL ASSIGNMENT FOR EACH GRAIN

- Selection of one voxel of the grains.
- Automatic assignment of active material per grain.

CATHODE AFTER MATERIAL ASSIGNMENT

(Pre-)segmented cathode with electrolyte, binder, and combined active materials

Cathode with electrolyte, binder, LCO and NCA

OPTIONS FOR GRAIN SEGMENTATION

MATH 2 MARKET

LCO

NCA

- Segmentation by selection
- Segmentation by shape

OUTLINE

1 Introduction

2 ImportGeo: import of cathode FIB-SEM image

GrainFind: segmentation of the two active materials

4 BatteryDict: battery charging simulations

5 Outlook

HOT RESEARCH TOPIC: HOW MUCH BINDER IS OPTIMAL?

Not enough binder:

https://steiermark.orf.at/news

Too much binder:

https://www.deinfuehrerschein.de

e have to take detours

Li⁺ cannot enter electrolyte

CURRENT DENSITY IN ALL SOLID MATERIALS

 Almost all current goes through the binder + carbon black

LI⁺-CONCENTRATION IN THE CATHODE DURING CHARGING

HOW MUCH BINDER IS OPTIMAL?

Flex point means, battery cannot be charged much further

More binder makes the cathode worse

OUTLINE

1 Introduction

ImportGeo: import of cathode FIB-SEM image

GrainFind: segmentation of the two active materials

BatteryDict: battery charging simulations

5 Outlook

MATH PARTICLE EXPANSION 2 MARKET

-- 26 -- © Math2Market GmbH

LITHIUM PLATING IN ANODE HALF-CELL SIMULATION

charged with **3C** in BatteryDict

- 2. Executing Python-Script
- 3. Use updated anode for next cycle
- Plating sets in at 50 % SoC in the1. cycle
- Capacity drops significantly after the 4. cycle

THANK YOU!

Meet us at BOOTH #6

-- 28 -- © Math2Market GmbH