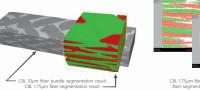


DEVELOPMENT OF AN Al-BASED WORKFLOW FOR OBJECT RECOGNITION IN COMPUTED TOMOGRAPHY DATA USING THE EXAMPLE OF FIBER-PLASTIC COMPOSITES

Development of an Al-based workflow for generation of structure models from CT-Data by using object detection on gray-scale data and the prediction of composite properties

- Close the gap between CT-Data and geometry model
- Improve the Object detection based on unsegmented CT-images
- Create large high-resolution geometry models for the prediction of processing properties based on prior known structure and scan information


ichel^{1,*}, Lilli Burger¹, Dennis Andreas Grießer¹, Rolf er¹, Erik Glatt¹, Oliver Rimmel

100mm Typical carbon fiber fabrics for FRP production (I), µCT-generated images of a fiber structure (II, top) & a fiber bundle section (II, bottom), computer-generated "replicas" (III)

CHALLENGES BY SEGMENTATION OF 3D-DATASETS (CT-DATA)

- Low contrast between fibers and matrix material, intensified issue by additional image artifacts
- Accuracy of the segmentation with almost indistinguishable gray-values
- Detection on different scales, between individual fibers and full fiber bundles
- Artifacts and limited resolution lead to deviations in the model and the prediction
- Using easy-to-use Al-segmentation tools currently available in GeoDict

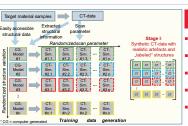
C8L 1.75µm fiber segmentation result slice with fiber segmentation result within fiber bundle

Relevant device- and material-specific artifacts

Direction-dependent noise in scans

Direction-dependent contrast of the fibers

Resin-rich zones and locally variable fiber


Low contrast of the fibers to the matrix
Displacement of and contacts between rovings

CHOICE OF MATERIAL

A carbon fiber fabric and a glass fiber fabric were selected. This allows development and validation to be carried out on both different fiber materials and semi-finished product architectures. On the one hand, the mesoscopic structure (i.e. the shape in which the fiber bundles were interlaced / sewm) is of interest in a CF fabric or a GF fabric. On the other hand, the microscopic structures, in which the individual fibers within the fiber bundles are analyzed, are also of interest.

Example shown here:

- Sample thickness 2.04mm
- Carbon fibers in epoxy resin matrix
- 8 layers of G-weave woven bundles
- Full fiber bundle contains 3000 fibers with 7um diameter
- Fiber Volume Content 44 1 vol -%

Synthetic C8L 10um structure

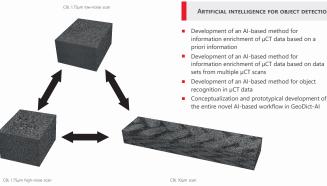
GENERATION OF SYNTHETIC CT-DATA WITH ADDED ARTIFACTS Investigation of µCT-scans to classify artifacts based on the µCT-parameters Simulative generation of a large number of synthetic training datasets

- Parameter space definition for generation of synthetic μ CT datasets
- Randomization of structure and scan-parameters for different synthetic µCT-datasets Development of a simulation environment for the
- generation of synthetic CT data Generation of µCT-datasets with GeoDict using GeoApp "Generate Artificial CT

THEE-

- Parameter space variation for training of different neural networks
- Addition of realistic device- and method-specific imaging artefacts
- Synthetic CT data can be generated in sufficient quality (fiber volume content difference between real and synthetic CT data is less than 5 percentage points according to the defined segmentation

MEL-



GEOAPPS IN THIS WORKFLOW

GeoApps are script-based application workflows included in GeoDict, using tools and modules available in GeoDict in combination with the possibilities of a script-based programming language to enable complex workflows, include new ideas and utilizing Python plug-ins for applied mathematical modeling.

The Generate Artificial CT app available in GeoDict creates a multi-material artificial CT based on the voxel geometry loaded in GeoDict.

The project-specific **Fiber Bundle Structure Generator** app creates carbon or glass fiber-plastic composites with different numbers of layers as well as fiber volume percentages.

Artificial intelligence for object detection and Super-Resolution

- Use both real and synthetic CT-data for training, information enrichment of µCT data based on a testing and validation of AI for object detection Integrate a-priori information for identification of objects on different scales
 - The a-priori-information could be used to simplify entation or to correct unrealistic

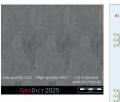


Image enhancement with GeoDict-Al

GEODICT-AI

Functionalities in **Geo**Dict that aim to reconstruct 3D models obtained from segmented computer tomography or FIB/SEM images of different multi-component materials, e.g. nonwovens and electrodes.

Provides the possibility of using Artificial Intelligence (AI) approaches for the separation of the different material during image segmentation

Using the GeoDict structure generation modules to generate training data for the right parameter ranges to match the statistical properties for the considered

Train and apply a custom neural network in GeoDict Al. A neural network can be trained to enhance the image quality.

Al for the generation of simulation models for material development from CT data

introduces an Al-powered workflow designed to enhance geometry model creation from μ CT data, targeting both efficiency and accuracy to meet the needs of advanced material development.

The primary objective of KI4MaterialModeling is to develop a comprehensive, Al-based approach for generating precise geometry models from μ CT data, with an emphasis on fiber-reinforced polymer composites as a representative case study. The methodology builds on three interconnected Al-driven components: (1) the generation of synthetic μ CT data containing realistic imaging artifacts, (2) a specialized Al model for data enrichment that enhances μ CT data quality, and (3) an Al-based object recognition system to identify structural features within μ CT datasets. Together, these components form a cohesive workflow that advances current capabilities.

 Fusion of synthetic geometry model generation and μCT image segmentation tools

Training

- Object recognition on gray value images
- Al-based information enrichment
- Application of structurally complex fiber-plastic composites

Pairs of low- and high-resolution data combined with aligned overview data

(funding reference: 01|S23054A) and conducted in cooperation with Leibniz-Institut für Verbundwerkstoffe GmbH

A. Grießer, R. Westerteiger, E. Glatt, H. Hagen, A. Wiegmann; Identification and analysis of fibers in ultra-large micro CT scans of nonwoven textiles using Deep Learning; The Journal of the textile Institute (accepted 2022 with minor GeoDict simulation software Release 2025, by Math2Market GmbH, Germany, doi.org/10.30423/release.geodict2025