

DELFIN - DEVELOPMENT OF A VALIDATED SOFTWARE TOOL FOR ALL-SOLID STATE BATTERY MATERIALS

Understanding the material-property relationships for electrode design through digital material research & development.

In the public research project **DELFIN** we strive to develop a validated software tool for digital R&D of All-Solid-State Batteries (ASSBs). Our project partners comprise of both academic and commercial partners: Experimental design of ASSB cathodes and electrochemical experiments are conducted at **Justus-Liebig University in Giessen**, digitalization of cathode structures using new approaches in µ-CT 3D scans are provided by **RJL Micro&Analytics**. Our partner group at **University Ulm** develop stochastical structure generators to model ASSB cathodes. At Math2Market, we combine the developments into the BatteryDict and Import tools, validate the results with experiments and provide a product ready for the digital design of ASSBs.

thors: eximilian Luczak¹*, Majid Vafaeezadeh¹, man Buchheit¹, Fabian Biebl¹, Sven Linden¹, k Glatt¹, Sebastian Rief¹

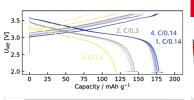
DIGITALIZE CATHODE STRUCTURES

 μCT data is commercially available, but resolution is at the limit of usability for ASSB applications

- Standard:
 - Good topographical resolution Resolution up to 0.1 um possible
- Free Field Phase Contrast:
- Material contrast / chemical composition
- High contrast for materials and background

- Detailed texture in Standard reconstructed image
- High contrast between foreground and background and materials in Free Field Phase Contrast image

BatteryDict slows for solid electrolytes and configures the solver equations accordingly:


Diffusion and migration terms are not required regarding ASSBs.

Since the transfer number is always t+=1, charge conservation and electroneutrality term are simplified.

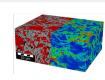
ANALYZE CATHODE STRUCTURES AND VALIDATE SIMULATION RESULTS

Material Information: DD 00: Pore DD 01: NMC811 - DELFIN_version240709 DD 02: LPSCI - test

· 0


- 0.1 C

0.14

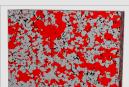

0.08

0.06

0.02

JUSTUS-LIEBEIG-UNIVERSITY GIESSEN

AUSTUS LIEBO


Operation of batteries

- Charge curve for variable charge rates
 - 3D Li-concentration during operation with fully resolved simulation
 - Fast simulation using a homogenized model (pseudo-2D Newman model) Instant estimation of charge

Ø üűlm

Accounting for the exchange current between active materials and solid electrolytes is now implemented in the material database New materials such as LPSCI are shipped with GeoDict 2025 to allow ASSB simulations in BatteryDict.

Pore size distribution Grain size distribution Surface area Length of contact lines Tortuosity Fit result: i_{0, max}: 0.15491274 Ami² x

Exchange Current Density plotted against the State of Charge (SOC) NMC811-LPSCI ce: Ania Bielefeld et al 2022 J. Electrochem. Soc. 169 020539

UNIVERSITY ULM

Transport parameters

Conductivity

Diffusivity

Lithium concentration

Path of single particle

 $i_{\rm se} = i_{\rm 0,max} \sqrt{\frac{c_{\rm e}}{c_{\rm e,equ}}} \cdot 2 \; {\rm sinh} \left(\left(\varphi_{\rm s} - \varphi_{\rm e} - U_0 \right) \frac{F}{2 \, R \, T} \right) \label{eq:ise}$

MODELLING ASSB **CATHODE STRUCTURES**

- ASSB cathode generator GeoApp will be available in GeoDict
- GeoApp to carry out the virtual design of ASSB cathodes using a parametric model
- New materials (like LPSCI) available in the GeoDict material database
- Publication with University Ulm has been submitted!

DELFIN ENHANCES THE DESIGN OF ASSB MATERIALS

- FROM SEGMENTATION OVER STRUCTURE ANALYSIS TO NEW STRUCTURE GENERATORS -

Justus-Liebeig-Universität Giessen

RJL Micro & Analytic

 $l_{\text{Se}} = 2\,l_{0,\text{max}}\sqrt{\left(1-\frac{c_{\text{s}}}{c_{\text{max}}}\right)\frac{c_{\text{s}}}{c_{\text{max}}}}\,\sqrt{\frac{c_{\text{e}}}{c_{\text{e},\text{equ}}}}\cdot2\,\sinh\left(\left(\phi_{\text{s}}-\phi_{\text{e}}-U_{0}\right)\frac{F}{2\,R\,T}\right)$

Frof. Volker SchmidtDr. Orkun Furat

- Anina Dufter

03XP0562A

René Rekers