

 https://doi.org/10.30423/userguide.geodict

User Guide

GeoDict release 2024
Published: February 13, 2024

GEOPY SCRIPTING

to automate GeoDict simulations

© Math2Market GmbH 2024

Citation:

Janine Hilden, Jürgen Becker, Anne Blumer, Barbara Planas. GeoDict

2024 User Guide. GeoPy scripting to automate GeoDict simulations

handbook. Math2Market GmbH, Germany,

doi.org/10.30423/userguide.geodict

All rights reserved. It is not permitted to reproduce the book or

parts thereof in any form by photocopy, microfilm or other methods

or to transfer it into a language suitable for machines, in particular

data processing systems, without the express permission of the

publisher. The same applies to the right of public reproduction.

The handbooks in the User Guide series of Math2Market GmbH can

be obtained from:

Math2Market GmbH

Richard-Wagner-Strasse 1

67655 Kaiserslautern

Germany

Phone: +49 631 205 605 0

Fax: +49 631 205 605 99

Email: info@math2market.de

Web: www.math2market.de

GEOPY SCRIPTING TO AUTOMATE GEODICT SIMULATIONS 1

STRUCTURE OF A GEOPY MACRO (*.PY) 3

MACRO MENU 6

START MACRO RECORDING 7

END MACRO RECORDING 7

EXECUTE MACRO / SCRIPT 8

SESSION MACRO 24

CONVERT GMC TO PYTHON MACRO 29

RE-EXECUTE THE LAST PYTHON SCRIPT. 29

GEODICT CONSOLE 30

CHOOSING A TEXT EDITOR TO EDIT A MACRO 34

EDITORS AVAILABLE FOR WINDOWS USERS 35

EDITORS AVAILABLE FOR LINUX USERS 35

PARAMETER MACROS FOR PARAMETER STUDIES 36

TRANSFORMING A SIMPLE MACRO INTO A PARAMETER MACRO FOR A PARAMETER STUDY 36

STARTING VARYMACRO FROM PYTHON 42

AVAILABLE VARIABLE TYPES 44

PYTHON SCRIPTING IN GEODICT 50

GEODICT APPLICATION PROGRAMMING INTERFACE (API) 50

SHIPPED PYTHON MODULES 75

POWERPOINT REPORT GENERATION 76

ACCESS TO GEODICT RESULT FILES (*.GDR) 81

CREATE CUSTOM GEODICT RESULT FILES (*.GDR) 84

ACCESS TO GEODICT STRUCTURES AND RESULT FIELDS (GUF FILES) 96

ERROR REPORTING 103

EXECUTE A PYTHON SCRIPT 107

RUNNING GEODICT FROM THE COMMAND LINE 108

GeoDict 2024 User Guide 1

GEOPY SCRIPTING TO AUTOMATE GEODICT

SIMULATIONS

GeoDict offers the key possibility of recording and executing macros or scripts directly

from the GUI (Graphical User Interface) or in the command line.

A scripting language is a programming language that automates the execution of

tasks which could alternatively be executed one-by-one by a human operator.

In GeoDict, the older GMC macro language is being phased out and Python is now the
language for these scripts.

In GeoDict, variables and their operations which are defined in a simple Python macro,
can be modified using text editor capabilities. The advantages of using macros with

variables and other GeoDict macros are:

◼ Automation of sequences of operations that can run:

◼ Without intermediate user interaction.

◼ With automatic parameter variation.

◼ Avoidance of the error-prone and time-consuming process of sequentially

introducing values and clicking the same buttons during frequently repeated
processes.

◼ Documentation of input parameters providing a record of the user’s activity that

can be reproduced by him/herself and by others. All generation parameters are
recorded in the macro and might be modified at any time.

◼ Option of delaying the execution of the operations listed during the macro
recording. Using Record Only the macro can be recorded first without actually
executing the commands. For example, the user records several filtration

simulations to run them during the weekend or when cluster time is available.
Perhaps the user prefers to work on a local computer, but the simulation

computations must be done on a remote, more powerful computer.

◼ Possibility of modifying an isolated parameter in a recorded macro. The user
can edit the macro with any available text editor (Emacs, WinEdit, WordPad,

Notepad, etc.). The modified macro can then be executed.

◼ Execution of the macro without the intervening GUI, simply as a command line

tool. For example, when the user needs to run GeoDict in a batch queue on a
Linux cluster or wants to control GeoDict by an outside optimization algorithm.

◼ Variables may take a single value, or multiple values, conveniently defined as a
parameters study (via a text editor) or in the GeoDict GUI.

◼ Macros with variables can reduce the many input parameters for the various

commands in macros to just a few important ones.

◼ The relationship between input parameters may be implemented through

arithmetic operations. For example, the user chooses the value for the short cross-
section diameter of an ellipsoid fiber, and the long one is automatically entered to
be 3 times as big.

◼ Macros with variables can be used to “program” GeoDict. For example, when a
whole sequence of operations from GrainGeo, ProcessGeo, or LayerGeo is needed

to create a realistic geometric model, yet the resolution, porosity, and grain size
can vary. Such behavior is seen in the predefined models, e.g. for the GrainGeo

GeoPy scripting to automate GeoDict simulations

2 GeoDict 2024 User Guide

module included in the installation folder. In another example, movies may need

to be made always with the same corporate color scheme and from the same
perspective, on structures of your choice.

◼ Macros can also be recorded by running GeoDict macros, including parameter

studies, to create the user’s own new "effective commands" for GeoDict.

The following lists the most important definitions for better comprehensibility:

◼ A Command is a directive to a computer program, interpreting to perform the
corresponding task.

◼ In a Macro a sequence of commands is saved from the GUI and can be replayed

at any time. GeoDict macros can be edited in any available text editor. How to
record a macro is explained on page 7.

◼ All commands in the GeoDict modules are controlled by Parameters that can be
edited in the respective module sections. Different parameters lead to different

results. These parameters can be recorded in macros, where they can also be
edited.

◼ Python is the default interpreted programming language for GeoDict macros. The

structure of a *.py GeoDict macro is described on page 3.

◼ GeoPy is a short form of GeoDict Python and refers to the programming language

of GeoDict macros.

◼ GMC is the old programming language used in GeoDict macros. It can still be used
but it is recommended to switch to GeoPy.

◼ Command lines are commands in form of successive lines of text, used in a
command-line interface. How to start GeoDict from the command line is described

on pages 108ff and how to use GeoDict’s own command-line interface is explained
on pages 30ff.

◼ In computer programming Variables are used to store information, e.g. in form

of numbers (integer, float), text (string) or module parameters (dictionary). The
transformation of a simple macro in a parameter macro containing variables is

described on pages 36ff.

Further examples and tutorials are found in the Macro Execution Control, described
on page 8.

There are also helpful workshop videos to be found on the Math2Market YouTube
channel.

The GeoPy for beginners workshop shows how to record macros, introduce
variables and access result files from macros and is split in three parts:

◼ GeoPy for beginners - Part 1

◼ GeoPy for beginners – Part 2

◼ GeoPy for beginners – Part 3

The GeoPy for advanced users workshop shows advanced topics as functions,
loops, plots, and PowerPoint report generation in three parts:

◼ GeoPy for advanced users – Part 1

◼ GeoPy for advanced users – Part 2

◼ GeoPy for advanced users – Part 3

https://www.youtube.com/watch?v=ln_CnqOBpgc
https://www.youtube.com/watch?v=D9Uv9IuIPPc
https://www.youtube.com/watch?v=0B9pKBPf1V0
https://www.youtube.com/watch?v=KYragSkJUo8
https://www.youtube.com/watch?v=GOhaJ1ugLvo
https://www.youtube.com/watch?v=cO1p7f8ermg

Structure of a *.py GeoDict macro

GeoDict 2024 User Guide 3

STRUCTURE OF A GEOPY MACRO (*.PY)

GeoPy (GeoDict Python) macros are scripts running a sequence of commands, even

from different licensed modules. Their suffix is .py and they consist of (at least) four
blocks:

1. Header = {} contains general information with comments on the release,
recording time, the recorder or creator and the system used.

2. Description = ''' ''' is automatically generated and, before any editing or adding
of information, it simply describes the GeoDict version used for recording the

macro in the given time and date, and the licensee.

3. Variables = {}. When called from the command line (or first level call), the
default values for the variables in the *.py file are used. When called from the
GeoDict GUI or from another *.py file (second level call), the default values are

ignored. Detailed information about the variables block can be found on page 44.

4. The command block contains the commands to be executed by GeoDict.

If Save macro results to new folder and Store general preferences in macro
are checked in the Start Macro Recording dialog box (page 7), the block starts
with GeoDict:CreateProjectFolder and the GeoDict:Preferences which are the

settings entered in the settings dialog (Settings → Settings… in the menu bar).

Afterwards the recorded commands can be found. For example, the key

FiberGeo:Create commands the FiberGeo module to create a structure and to
save it as GeoDict structure file (*.gdt).

The command parameters are given in a Python dictionary assigned to a variable

called commandname_args e.g. Create_args for the FiberGeo Create command.
Find all parameters from the GUI in this dictionary given in key : value pairs.

GeoPy scripting to automate GeoDict simulations

4 GeoDict 2024 User Guide

For example, the 'Domain' : {} parameters in the Create_args parameters

define the periodicity, spatial location (origin), voxel length, and size (NX, NY, NZ)
of the structure. After this, the macro continues with the parameters for
grammage, overlapping settings, random seed, isolation distance, etc.

Domain parameters

Overlap parameters

All parameters from the GUI can be found

in the recorded macro

Structure of a *.py GeoDict macro

GeoDict 2024 User Guide 5

Because, in this case, two different materials (both Infinite Circular Fibers) are

used in the structure, 'Generator1' and later 'Generator2' are called. For these
objects the parameter values for 'Material', the 'DiameterDistribution', and the
'OrientationDistribution' of both materials are given.

Finally, gd.runCmd() executes the command. This function needs three input
values:

◼ GeoDict command, here FiberGeo:Create,

◼ command parameters usually defined above and assigned to a variable, here
Create_args,

◼ release year, usually given by the header.

GeoPy scripting to automate GeoDict simulations

6 GeoDict 2024 User Guide

MACRO MENU

The Macro menu in the menu bar gives access to the following functionality:

◼ Recording a macro

◼ End a macro recording

◼ Execute a macro or script and access example macros

◼ Session macro

◼ Convert GMC macros to Python macros

◼ Re-execute the last Python script

Simple macros are saved while recording a macro or using the Session Macro dialog.
A Simple Macro only contains the recorded commands from the GUI. A simple macro
becomes a Parameter Macro once variables are defined in it. The macro block listing

the variables (Variables = { }) is already written when a simple macro is recorded,
but it is initially empty of variables. Besides defining or editing these variables, the

user also programs the commands for their use.

Macro menu –macro recording

GeoDict 2024 User Guide 7

START MACRO RECORDING

To begin recording a macro, select Macro → Start Macro Recording… in the menu

bar.

The Start Macro Recording dialog opens and offers the following options:

◼ Save macro results to new folder can be selected to include the command
GeoDict:CreateProjectFolder. The name entered for the macro is given to the

newly created project folder. All files created during the execution of the macro
are saved in this folder.

◼ Store general preferences in macro can be selected to include the command

GeoDict:Preferences in the recorded macro (see page 13). In GeoDict the
preferences can be edited by selecting Settings → Settings… from the menu bar.

At the bottom, enter a File Name to save the macro in the project folder.

 (*rec) appears to the right of Macro in the menu bar as soon as OK is clicked.

END MACRO RECORDING

The recording of a macro is stopped by selecting Macro → End Macro Recording.

This is grayed-out and not selectable unless a macro is being recorded.

GeoPy scripting to automate GeoDict simulations

8 GeoDict 2024 User Guide

EXECUTE MACRO / SCRIPT

To execute a macro, select Macro → Execute Macro / Script… to open the Macro

Execution Control dialog.

The dialog contains two separate parts that can be collapsed and expanded at will.

In the left panel, several folders are listed:

◼ Preinstalled macros are found by unfolding the Macro Tutorials & Examples
folder.

Macro menu – Execute macro / script

GeoDict 2024 User Guide 9

The tutorial macros A, B, C and E need only a GeoDict Base license for execution.

The tutorials D and F also need the modules FiberGeo and FlowDict and are the
macros created in the workshop videos available on the Math2Market YouTube
channel. Find the corresponding links in the macros by opening them in a text

editor clicking Edit as described on page 10 or use the links given on page 2.

All tutorials have detailed descriptions and thus can be very helpful for getting

started with editing Python macros.

More advanced example macros can be found in the subfolder Python Scripting
Examples. These Python scripts also use other GeoDict modules.

When selecting one of the available macros, the description area displays a report
about the macro. In the macro, this report content can be found between the triple

apostrophes after Description = ''' ''', and can be edited at any time after
opening the macro with a text editor.

For the Tutorial-A-general.py macro, the text in the macro and in the description
area are shown here.

◼ The GeoApps folder contains all the GeoApps to be found by selecting GeoApp
from the menu bar. They are described in the GeoApps handbook of this User

Guide.

◼ The MyGeoApps folder can be filled with the user’s own GeoApps as also
described in the GeoApps handbook. By default, it contains MyFirstGeoApp, an

example GeoApp

◼ In the SessionMacro folder, macros

containing all commands from the current
GeoDict session and the last sessions are
saved automatically. The commands

contained in these macros are the same that
can be found in the Session Macro dialog

described on pages 24ff.

https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=GeoApp&release=2024
https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=GeoApp&release=2024

GeoPy scripting to automate GeoDict simulations

10 GeoDict 2024 User Guide

They can be edited at any time since they are saved in the SessionMacro folder

inside the GeoDict settings folder.

◼ The last folder is the selected project folder. All macros inside this folder are
shown. Fill this folder for example, by using Record Macro (described on page 7)

or the Session Macro dialog (described on pages 24ff).

Four buttons are located under the left panel of the Macro Execution Control dialog:

◼ Add Folder - Click to add another folder containing macros to the panel.

◼ Browse… may be used to find and select a macro (*.py, *.gmc) from other than
the already listed folders in the left panel. Macros shipped with GeoDict can be

found for example in the folders GeoApps, GrainGeo, Macro Tutorials &
Examples or GeoDictAI included in the installation folder of GeoDict.

◼ Refresh - Clicking Refresh actualizes the list of macros in the pull-down menu.
After adding new macros to the project folder, click Refresh to have their file

names included in the list.

◼ Edit… - GeoDict macros are stored as readable text files and, therefore, can be
edited using any text editor, e.g. Editor, WordPad, or Notepad++.

The basic way to edit a macro (e.g. macro.py), is to find the macro file name in
the project folder, right click on it, and select Open With…. Choose the editor

from the list of available programs. However, the macro.py can be directly
opened, and then edited from the Macro Execution Control. For this, highlight
a macro in the left panel.

Click Edit… to open the selected macro using the designated text editor (see
page 34 on how to set it). The macro then can be examined and edited.

Macro menu – Execute macro / script

GeoDict 2024 User Guide 11

The macro follows the structure explained on page 3: Header={}, Description=''' ''',

Variables={} and the command block.

The user can modify directly any parameter or command listed in the command block,
or perhaps, introduce a variable.

After modifications, the macro file can be saved with a different name (e.g.

macro1.py). Click Refresh to have the name of the macro, modified and saved in the
project folder, appear in the list of macros in the left panel of the Macro Execution

Control dialog.

GeoDict does not recognize a file as a macro when the file extension is not *.py or
*.gmc. This can happen for example when Windows settings are such that extensions

GeoPy scripting to automate GeoDict simulations

12 GeoDict 2024 User Guide

are not shown and, coincidentally the text editor (i.e. Editor or WordPad)

automatically adds an extension to the file name (*.txt, *.doc, etc). Then, GeoDict
finds macro1.py.txt instead of macro1.py and does not recognize it as a macro,
failing to open it.

The simplest solution is to select a text editor used in programming, e.g., Emacs for
Linux systems, or Notepad++ for Windows. How to set a text editor as default editor

is described on page 34.

After adding folders with the Add Folder or the Browse button, they can also be
removed at any time by right-clicking on the folder and selecting Remove.

MACRO DESCRIPTION

On the right part of the Macro Execution Control dialog, the entries in the upper

panel correspond to each one of the gd.runCmd() (see page 50) commands, that can
be seen when opening the macro with a text editor.

Load the built-in default folders, set the current folders as start-up settings or
raise the GeoDict main window through the icons at the bottom left of the
dialog when needed. Resting the mouse pointer over an icon prompts a tooltip

showing the icon’s function to appear.

http://www.gnu.org/s/emacs/
http://notepad-plus-plus.org/

Macro menu – Execute macro / script

GeoDict 2024 User Guide 13

For GeoDict:Preferences, FiberGeo:Create, and GeoDict:LoadGdrFile, they are

as follows:

The Description panel below contains information about the macro. Regarding a
recorded macro it gives by default information about when the macro was recorded
and who recorded it.

This report content can be found early in the macro, between the triple apostrophes
after Description = ''' ''', and can be edited at any time after opening the macro

with a text editor.

GeoPy scripting to automate GeoDict simulations

14 GeoDict 2024 User Guide

FIXED AND VARY PARAMETERS

For the user’s convenience, the macro block listing the variables (Variables = {}) is
already created during the recording of a simple macro, but it is initially empty of
variables. A simple macro can be transformed into a parameter macro as explained

below starting on page 36.

When a macro contains variables, and thus is a Parameter Macro, the Parameters

button and the Fixed and Vary radio buttons are available on the right upper side of
the Macro Execution Control dialog.

With Fixed selected (by default), click Parameters to change the parameters for the

execution of the macro.

With Vary selected, clicking Parameters opens a different parameter dialog box
where parameter lists can be entered.

Macro menu – Execute macro / script

GeoDict 2024 User Guide 15

The macro is executed several times with different parameter values combinations.

In the macro, the variable values are described within the brackets of Variables =
{}. They are listed right after the header.

In the VariableStudy.py macro, two variables are present as indicated by the line

'NumberOfVariables' : 2. The variables are described by the parameters 'Name',
and 'Type' (int : integer) and by the value of the parameter (e.g. 'BuiltinDefault' :

10.0 and 47 here). Learn more about the different variable types on page 44.

When editing a parameter macro to run a parameter study in which several variable
values should be tried out, the Value and the Variation for each of the variables

must be set. The Variation can be set to VARY for a list of variable values or can be
coupled to another variable. Coupled variables are run in a synchronized way. When

the value of one variable is varied, the value of the coupled variable is modified
accordingly.

GeoPy scripting to automate GeoDict simulations

16 GeoDict 2024 User Guide

To couple variables, the same number of values must be entered under Value in the

boxes for every variable.

Observe the effect of choosing VARY or coupling to another variable in the pull-down
menu for Variation:

All possible combinations of the Solid Volume Percentage values with the single
Random Seed value are executed, leading to runs with variable values (10,47),

(15,47), (20,47). The value of the second variable is kept constant

Now, all possible combinations of the two Random Seed values with the single Solid
Volume Percentage value are executed, leading to pairs (10,15) and (10,20).

In the following case all possible combinations of the two Random Seed values with
the three Solid Volume Percentage value are executed, leading to pairs (10,15)

and (10,20), (15,15), (15,20), (20,15), (20,20).

Setting the parameter Variation to the other parameter leads to coupled pairs. As
mentioned in page 16, the same number of values for every variable must be entered
in the boxes.

Macro menu – Execute macro / script

GeoDict 2024 User Guide 17

The first values in Solid Volume Percentage (10) and Random Seed (30) are

coupled with each other, as well as the second values with each other (15 and 40),
and the third values with each other (20 and 50), resulting in the combinations
(10,30), (15,40), and (20,50).

If a parameter macro contains more than two variables, not all variables must be
coupled. Coupling Random Seed to Solid Volume Percentage and leaving Fiber

Diameter to VARY, leads to the combinations (10,30,10), (10,30,20),
(15,40,10), (15,40,20), (20,50,10) and (20,50,20).

An error message appears after clicking Run in the Execute Parameter Macro

section, when the values entered in the parameters dialog box are invalid.

GeoPy scripting to automate GeoDict simulations

18 GeoDict 2024 User Guide

Otherwise, clicking Run starts the execution of the parameter macro.

It is also possible to enter a range of parameter values for Value using the notation
start:step:end. This is useful if longer lists of variable values must be entered.

The notation 15:20 means that all the values between 15 and 20 are taken for the

computation. This results in the combinations (10,15), (10,16), (10,17), (10,18),
(10,19), and (10,20).

Also, the stepping can be set using the colon notation. The notation 15:2:20, meaning
to start from 15, and to take only every second value until 20 is reached, results in
the combinations (10,15), (10,17), and (10,19).

For the stepping value, negative values can also be used, if the start value is bigger
than the end value. If the variable is a floating number, a floating point can be used
as stepping value. 20:-2.5:10, meaning to start from 20, and to take only every 2.5th

value until 10 is reached, results in the combinations (20.0,47), (17.5,47),
(15.0,47), (12.5,47), and (10.0,47).

Macro menu – Execute macro / script

GeoDict 2024 User Guide 19

RUN (IN CLOUD, IN JOB QUEUE), LIVE UPDATE, CONTINUE ON ERROR,
SILENT MODE, STEP, SKIP, LOAD PARAMETERS, RESET MACRO AND

RECORD ONLY

To execute the complete macro on the current machine, click Run.

Click Run in Cloud to run the simulation in the GeoDict cloud, see the High
Performance Computing handbook of the User Guide for details. To run the macro on
machines connected in your local network, click Run in Job Queue, also explained

in more detail in the High Performance Computing handbook of the User Guide. If
interested in cloud simulations or job queueing contact Math2Market to apply for a

GeoDict cloud or job queueing license.

With Live Update/ Unroll checked, every step is shown in the GUI. Additionally, all
commands executed in the macro are recorded to the Session Macro, instead of only

recording the GeoDictMacro:Execute command. However, the execution of the macro
is faster if this box stays unchecked.

The Continue on Error checkbox below can only be checked if Vary is selected.

Check Continue on Error to execute all parameter combinations entered to the
Parameter dialog box that work and not only all up to the parameter that results in
an error.

For example, if the parameters 10, -5, 20 are chosen for the Object Solid Volume
Percentage, the macro executes only for SVP=10. When Continue on Error is

checked, it is also executed for SVP=20.

If Silent Mode is checked, no message boxes are shown during the macro execution.

Alternatively, the macro’s key commands can be executed step-by-step when clicking

Step instead of Run (only available if Fixed is selected).

https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=HighPerformComp&release=2024
https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=HighPerformComp&release=2024
https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=HighPerformComp&release=2024

GeoPy scripting to automate GeoDict simulations

20 GeoDict 2024 User Guide

While stepping through the macro, the GeoDict’s GUI main screen remains active, so

that it is possible to see and save intermediate results, as well as change the rendering
from 2D to 3D.

The execution of the macro can be further controlled with Skip, Load Parameters,

and Reset. During a step-by-step execution, the highlighted key command in the
description area is jumped over when clicking Skip.

The user must consider the consequences that the skipping of a command has. For
example, an error message appears when skipping the creation of a new project folder
for the data, so that the data is actually saved in the current project folder and then,

trying to leave the (not created and not existing) project folder, and move up the
folder path.

Clicking Load Parameters, the parameters from the highlighted macro command
are entered for inspection in the corresponding parameters dialog box or in the

module section.

However, when later executing the extracted macro command, the parameters
continue to be taken from the saved macro. Modifying parameters in the inspected

dialog box has no effect on the previously recorded macro or in the ongoing execution
of the macro.

For example, when clicking to load the parameters from the command ProcessGeo
Dilate the parameters used for Dilate MaterialID, Coating MaterialID, and Dilate by…,
during the recording of the macro, are directly entered in the ProcessGeo section.

Loading the parameters might be interesting if the user decides to abandon the
execution of the macro at a given command, and to post-process the structure by

modifying its parameters directly in the module’s GUI, to obtain a different result.

Macro menu – Execute macro / script

GeoDict 2024 User Guide 21

When clicking Reset, the first key command in the description area is highlighted
again so that the macro can be executed stepwise from the beginning.

Click Record Only while recording a macro to record the commands and the variables
edited in the Parametes dialog of the selected macro in the Macro Execution
Control.

When the executed macro includes a command for which the user must intervene
(such as the saving of a result file when one with the same name already exists), a

message appears to decide whether the data should be rewritten or should receive a
new name. A lack of reaction within 20 seconds results in the existing data being
automatically saved with a suffix (current time) in a new folder called

00GeoDictBackUp. The message waiting time can be changed in the settings dialog
to be found by selecting Settings → Settings… from the menu bar. If running the

macro in Silent Mode these message do not appear and the results are back-upped
automatically.

GeoPy scripting to automate GeoDict simulations

22 GeoDict 2024 User Guide

ADDING OTHER PYTHON PACKAGES

To install additional Python packages click Add Python Package in the Macro
Execution Control dialog.

Fill in the name of the desired Python package. Clicking Run installs the package

automatically. Owning admin rights, it can be installed for all Users. If installed for
all users, the package is installed in the GeoDict installation folder (e.g. C:\Program

Files\Math2Market GmbH\GeoDict 2024\Python\lib\site-packages). If installed only
on the local machine, it is installed to the Python folder inside the GeoDict settings
folder (C:\Users\Username\GeoDict2024\Python). After installation, restart GeoDict

to use the new package.

It is also possible, to install needed Python packages offline, if downloaded before.
For this, run a Python macro as described on page 19. The macro must contain the

following code:

InstallPyPackage_args = { # define parameters

dictionary

 'Name' : 'dummy.whl', # instead of dummy.whl enter

the file path of the whl

file to install

 'Global' : False, # Global is the key for the

checkbox “Install for all

Users”. False means, the

box is not checked. If

changed to True, Admin

Rights are required to

install for all users.

 'Mode' : 'LocalInstall',

}

Select the mode

LocalInstall to install

the package offline

gd.runCmd("GeoDict:InstallPyPackage",

InstallPyPackage_args)

execute the installation

The Python dictionary containing these keys can also be obtained by installing a
Python package using the button Add Python Package described above, while a

Macro menu – Execute macro / script

GeoDict 2024 User Guide 23

macro is recorded as described on page 7. Then, the value for Mode is 'Install'. The

third mode, that can be selected is 'Download'. If a Python package should only be
downloaded and not installed, use the installing Python package dictionary as follows:

InstallPyPackage_args = { # define parameters

dictionary

 'Name' : 'dummy', # instead of dummy enter the

name of the Python package

to download

 'Global' : False,

 'Mode' : 'Download',

}

Select the mode Download to

only download the package

gd.runCmd("GeoDict:InstallPyPackage",

InstallPyPackage_args)

execute the download

GEOPYAPI HELP

Click GeoPyAPI Help to open an overview about all GeoDict Python API commands,

described on pages 50ff. This overview is opened as an *.html file in the default
browser.

GeoPy scripting to automate GeoDict simulations

24 GeoDict 2024 User Guide

SESSION MACRO

From the moment in which the user begins a session with GeoDict, all commands
used are internally recorded and stored in the Session Macro. The user may decide

to select some of these recorded commands, create a macro that combines them, and
save this macro for later use.

After selecting Macro → Session Macro… in the menu bar, the Session Macro side

bar opens. It can also be opened by clicking on the side bar tab on the right of GeoDict.
If the GeoDict window is not maximized, the Session Macro tab may not be shown. It

can be found by clicking at the bottom of the side bar.

Undock the Session Macro panel and turn it into the Session Macro dialog by
clicking in the upper right corner. Although it is still minimized if the GeoDict GUI

is minimized, the dialog can be moved independently on the screen.

Macro menu – Session macro

GeoDict 2024 User Guide 25

The commands used during the session

appear in the upper panel of the Session
Macro dialog and can be selected

(highlighted). Click the single arrow

 to move the selected

commands to the lower panel in the
desired order.

Undock

GeoPy scripting to automate GeoDict simulations

26 GeoDict 2024 User Guide

To choose and move all commands from the upper panel at once, click the double

arrows instead.

Clicking Copy To Clipboard copies the highlighted commands from the upper panel
to the clipboard. From there, the user can paste them to an editor.

Click Load Input Parameters to only load the parameters of a single highlighted

command in the corresponding parameters dialog box in the module section.

Macro menu – Session macro

GeoDict 2024 User Guide 27

To run commands again without saving them to a macro, highlight the desired
commands in the upper panel and click Run Selected Commands.

Double clicking on a command, whether in the upper or in the lower panel, shows the
corresponding settings map in a new dialog.

The commands can be removed from the
lower panel by highlighting them and

clicking Delete Selected Commands.
To remove all commands at once, click
Clear.

After selecting and adding the commands
click Save.

GeoPy scripting to automate GeoDict simulations

28 GeoDict 2024 User Guide

In the appearing dialog, choose a filename and the desired folder where the macro

will be stored.

Macro menu – Convert macro to current version

GeoDict 2024 User Guide 29

CONVERT GMC TO PYTHON MACRO

GeoDict also ships with a compiler that can convert GMC macros to Python macros.
Select Macro → Convert GMC to Python Macro in the menu bar.

Click Browse… in the dialog box to select the *gmc macro to be converted.

Click OK. The new Python macro can be found in the same folder as the GMC macro.

RE-EXECUTE THE LAST PYTHON SCRIPT.

To quickly execute again the last Python script, select Macro → Re-execute Last

Python Script or press F9.

The python script is simply executed again without other selections.

GeoPy scripting to automate GeoDict simulations

30 GeoDict 2024 User Guide

GEODICT CONSOLE

GeoDict provides an interactive console within the GUI. All commands running from

the GUI are displayed in the console.

The console is found in the GeoDict GUI below the visualization area. This section can

be folded and unfolded by clicking on Console () in the bottom of GeoDict.

Clicking the symbol in the upper right corner, separates or undocks the console
from the rest of the GUI. Although it is still minimized if the GeoDict GUI is minimized,
the dialog can be moved independently on the screen.

To connect the console with the GUI again, drag and drop it to its place at the bottom

of the GUI or simply close the dialog.

Undock

GeoDict console

GeoDict 2024 User Guide 31

The box below the console can be used to run Python commands. One command line

at a time can be inserted, and it is run by pressing Enter on the keyboard.

Unfolding the pull-down menu of the box shows the last used commands and some
standard commands from the GeoDict Python API described on pages 50f.

Besides, variables can be used. Store information in a variable for later use as, for
example, the Python dictionary of the current FiberGeo parameters:

GeoPy scripting to automate GeoDict simulations

32 GeoDict 2024 User Guide

Typing the variable name again displays the value in the console. In the example, the

Python dictionary from the FiberGeo Create Options dialog is shown.

The variable value can be changed at any time by assigning a new value to the
variable, using the equal sign. Changing only one entry of a dictionary is done by
referring to the entry’s key in square brackets. The new value is assigned using the

equal sign.

GeoDict console

GeoDict 2024 User Guide 33

Now FiberGeo can be run with a solid volume percentage of 50 instead of 10, using

the Python API command gd.runCmd() which is described on page 50.

GeoPy scripting to automate GeoDict simulations

34 GeoDict 2024 User Guide

CHOOSING A TEXT EDITOR TO EDIT A MACRO

To define e.g. Wordpad as the default text editor, open GeoDict and select Settings

→ Settings … from the menu bar.

In the section Text Editor, at the bottom of the Settings dialog, click Browse to find
the path to the executable for the desired text editor.

To always open the macros in the selected editor, remember to store the settings as

start-up settings by clicking the corresponding icon in the Settings dialog.

Click OK to apply the editor change.

The next time the Edit button in the Macro Execution Control dialog box is clicked,

the macro file is opened for editing in the selected text editor.

For other editors, enter the path to the desired editor.

Choosing a text editor to edit a macro

GeoDict 2024 User Guide 35

EDITORS AVAILABLE FOR WINDOWS USERS

Notepad is a simple text-editor provided during the installation of Windows. The
Notepad text editor is called Editor in the Windows German edition. Syntax

highlighting is not available and when opening files from other platforms (e.g. Linux),
although the file is not corrupted, the commands are not displayed in easily readable
lines.

WordPad, another Windows built-in editor, is a good alternative for users who
seldom edit macros. Files from Linux platforms are also displayed correctly. However,

syntax highlighting is not available, and all formatting effects are removed when
saving and closing the file. Files must be saved in .py and not in .py.rtf format.

Notepad++ is recommended. The free source code editor Notepad++ is the most

comfortable alternative for Windows systems. Python syntax is highlighted and
although there is no syntax highlighting for GMC macro files, their syntax is similar

to C and HTML conventions and switching to C-syntax highlighting (Language → C

→ C++ in Notepad++ menu bar) helps improving readability of the files. The user

can also define his/her own syntax highlighting. Notepad++ is also included in the

GeoDict-Tools installer.

EDITORS AVAILABLE FOR LINUX USERS

gedit is provided with Ubuntu. Python syntax is highlighted.

Notepadqq is the Linux version of Notepad++.

PyCharm is not only an editor but an integrated development environment. While it

can be very useful for experts, it is not recommended for beginners.

GeoPy scripting to automate GeoDict simulations

36 GeoDict 2024 User Guide

PARAMETER MACROS FOR PARAMETER STUDIES

Using parameter macros is the smart choice when running studies in which some

parameter values need to be combined with another parameter while both are
varying.

For example, a simple macro, without variables, recorded while generating a fibrous
structure with FiberGeo, can be modified to create a parameter macro containing
variables. The introduced variables, random seed, object solid volume percentage

(SVP) and fiber diameter, are used in combination to produce sequences of random
realizations of the structure with a certain object solid volume percentage, i.e. series

of structures are generated for every chosen SVP, while the SVP is gradually increased
and the fiber diameter decreased.

TRANSFORMING A SIMPLE MACRO INTO A PARAMETER MACRO FOR A

PARAMETER STUDY

The user starts by recording the simple macro (simple_macro.py) during the
generation of a fibrous structure with the default values in FiberGeo. Therefore, start
macro recording as explained in page 7. We gave it the name “simple_macro.py”.

Then select Module → FiberGeo and click Record.

The single value for Random Seed is 42 and the single value for Object Solid

Volume Percentage is 10.

Afterwards, end the recording of the macro, by selecting Macro → End Macro

Recording.

Check now Macro → Execute Macro / Script ….

Click Refresh and, in the Macro Execution Control section, look for
simple_macro.py in the pull-down menu list. The description area displays a short

report about it.

simple_macro.py does not contain any variables at this point and thus, Fixed and

Vary are grayed out.

Parameter macros for parameter studies – Transforming a simple macro

GeoDict 2024 User Guide 37

Click Edit… and open simple_macro.py in the text editor of choice (here

NotePad++).

No variables are yet defined in simple_macro.py. The Variables block is where they
are defined and where they will be modified for the parameter study.

The first command is to create a structure (FiberGeo:Create). In the parameter
dictionary Create_args_1 first the Domain parameters are given. These parameters

are not changed in our example.

Among other parameters, now follow the parameters corresponding to overlap mode,
stopping criterion, number of objects, random seed, and other options that can be

found in FiberGeo under the Create Options tab of the FiberGeo Options dialog.

From these parameters, the Solid Volume Percentage, the Random Seed and the

Fiber Diameter will be used as variables and their entries in the macro are changed
in this example.

GeoPy scripting to automate GeoDict simulations

38 GeoDict 2024 User Guide

EDITING THE MACRO

Start editing the simple_macro.py by adding description information as shown here.
This is later displayed in the description area of the Macro Execution Control
section.

In the Variables block, (as shown above) change the NumberOfVariables to 3 and

un-comment the Variable1 by deleting the # signs.

Use copy-paste to add a second and third variable element.

'Variable1' is given the Name gd_SVP, 'Variable2' is given the Name
gd_RandomSeed and 'Variable3' is given the Name gd_FiberDiameter. These
names can be chosen as desired, but it is recommended to choose names describing

their usage in the macro to improve readability. This is also the only reason for the
prefix gd_, marking which variables in the macro are defined from the Parameters

dialog and which are defined within the macro. The variables would also work without
the prefix and different names, but then the macro code could be harder to
understand for others.

The first and third variable are Type double and the second is Type integer ('int')
and their starting BuiltinDefault values are 10 (%) for SVF, 42 for Random Seed

and 10 (µm) for Fiber Diameter. Some helpful hints on syntax for these variables
appear below the Variables block.

To store the output of the parameter study, change from the project folder to a new

folder with the name Variable_Study. For this purpose, add the
GeoDict:ChangeProjectFolder command to save the results in the new folder

'Variable_Study'. Find out more details about the variables block on page 44.

Parameter macros for parameter studies – Transforming a simple macro

GeoDict 2024 User Guide 39

In the block FiberGeo:Create, the Domain parameters are not modified

In the next group of parameters, for SolidVolumePercentage, change the numerical

value 10 to gd_SVP and, for RandomSeed, the value of 47 to gd_RandomSeed.

gd_SVP and gd_RandomSeed are placeholders for the sets of values to be defined
when running the macro (Macro Execution Control dialog box).

Right underneath of Random Seed, change the ResultFileName from
'FiberGeo.gdr' to:

 f'FiberGeo_{gd_SVP}_{gd_RandomSeed}_{gd_FiberDiameter}.gdr',

to associate the name of the result files (in GDR format) to the outcome of the
parameter study.

In this way, the result file names indicate the random seed, SVP and diameter values
applied to the generated structure.

Finally, in the block Generator1, more precisely in the subblock
DiameterDistribution replace the Value 1e-05 by gd_FiberDiameter * 1e-06. The
factor 1e-06 is needed, as the fiber diameters in the dictionary must be given in

meter. Thus, the fiber diameter of the first fiber type can be changed in the parameter
study, editing the value in microns.

In the editor, save the modified macro as variable_study.py (NotePad++: File →

Save As...)

Back in the Macro Execution Control section, click Refresh to actualize the left

panel and select (the just saved) variable_study from it.

The text entered under Description – in the edited macro is shown in the description

area and, since now the macro contains variables, Vary is available to be checked.
Check it and click the Parameters button.

GeoPy scripting to automate GeoDict simulations

40 GeoDict 2024 User Guide

The BuiltinDefault values that were specified in the variables block (10, 42 and 10)
appear in the boxes for Solid Volume Percentage, Random Seed and Fiber

Diameter. The labels of both variables have been taken from the variable_study.py
file.

To set the parameter study, enter four values of increasing Solid Volume

Percentage (10%, 20%, 30% and 40% SVP), three random seed values (e.g. 47,
48 and 49) and two values for Fiber Diameter (e.g. 10 and 20). Leave the Variation
for all three at VARY.

Parameter macros for parameter studies – Transforming a simple macro

GeoDict 2024 User Guide 41

Click OK and, in the Macro Execution Control section, click Run.

The execution of the variable_study.py macro takes only a short time and creates
three random realizations of a structure for every one of the four SVP values,
combined with every fiber diameter value.

The outcome is 48 items saved in the project folder Variable_Study: 24 result files
(e.g. FiberGeo_10.0_47_10.0.gdr) and 24 folders, each with a structure file (*.gdt)

inside (e.g. FiberGeo_10.0_47_10.0).

These 24 result files can be opened in GeoDict, and the Result Viewer offers the

possibility to combine some or all results in a plot. See the Result Viewer User Guide
for more details.

https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=ResultViewer&release=2024

GeoPy scripting to automate GeoDict simulations

42 GeoDict 2024 User Guide

STARTING VARYMACRO FROM PYTHON

Having transformed a simple macro to a parameter macro it is possible to automate
the parameter study in the Python macro. For this, start macro recording as described

in page 7.

Open the Macro Execution Control, check Vary and edit the parameters for the
variable study as desired (explained on pages 39ff).

Click Record Only to save the GeoDictMacro:VaryPython command without
running the macro.

The recording of the macro is stopped by selecting Macro → End Macro Recording.

In the Macro Execution Control click Refresh, highlight the new Python macro and
Click Edit.

The GeoDictMacro:VaryPython command is located after the Variables section.
This command can be used for any parameter macro. The file path and the variables
have to be given. The entries in the Variables dictionary correspond to the vary

parameters dialog box, described on pages 14ff.

Parameter macros for parameter studies – Starting VaryMacro from Python

GeoDict 2024 User Guide 43

For example, the value lists can be changed so that the number of the list entries is

the same. Thus, the ‘Variation’ of gd_RandomSeed and gd_FiberDiameter can be
changed from ‘VARY’ to ‘gd_SVP’.

After saving the macro click Run in the Macro Execution Control and the resulting
folder variable_study only contains two result files and two result folders.

GeoPy scripting to automate GeoDict simulations

44 GeoDict 2024 User Guide

AVAILABLE VARIABLE TYPES

The variables block in GeoDict Python macros provides many options. A summary of
all these options and some short explanations and examples can be found in the

comment block after the variables block in a recorded macro.

The variables block defines the parameters displayed in the Parameters dialog in the

Macro Execution Control (see page 15).

In the following, the available types of variables are described, and examples are

given. The type must be given as a string for the key ‘Type’.

int

For a variable of type ‘int’ only integer values are allowed, i.e. … -2, -1, 0, 1, 2, … If

Vary is checked in the Macro Execution Control also lists of values can be entered
with the start:step:end syntax described on page 18.

uint

For a variable of type ‘uint’ only nonnegative integer values are allowed for this
variable, i.e. 0, 1, 2, … In the Parameters dialog it is also possible to change the

value by clicking the arrows on the right or by turning the mouse wheel while the
cursor is rested on the parameter box. If a check is added, the arrows will not allow
values outside the given range. If Vary is selected in the Macro Execution Control

also lists of values can be entered with the start:step:end syntax described on page
18.

Parameter macros for parameter studies – Available variable types

GeoDict 2024 User Guide 45

double

For a variable of type 'double' any floating point number is allowed, e.g. -0.75, 10.3,
42.999. If Vary is checked in the Macro Execution Control also lists of values can

be entered with the start:step:end syntax described on page 18.

bool

A ‘bool’ variable defines a checkbox in the Parameters dialog. Possible values for

the optional key 'BuiltinDefault' are False (not checked) and True (checked).

string

Everything typed in the parameter box for a variable of type 'string' will be handled

as a string in the macro.

folderstring

For a variable of type 'folderstring' in the Parameters dialog a Browse button will
appear next to the parameter box to search for the desired folder on the computer.

filestring

For a variable of type 'filestring' in the parameter dialog a Browse button will appear
next to the parameter box to search for the desired file on the computer. The 'Unit'

is the file extension for this variable type and must be specified, e.g. 'gdr' or 'xlsx'.

'Type' : 'filestring',

'Unit' : 'gdr',

material

For a variable of type 'material' the desired material can be selected from the

GeoDict material data base. The 'Unit' must be specified as 'solid', 'fluid' or
'porous'. Also, a 'BuiltinDefault' value is needed, e.g. 'Manual'.

'Type' : 'material',

'Unit' : 'solid',

'BuiltinDefault' : 'Manual'

GeoPy scripting to automate GeoDict simulations

46 GeoDict 2024 User Guide

combo

A variable of type 'combo' defines a value choice, that will be displayed in a pull-

down menu (also named combo box) in the parameter dialog. For 'Unit' define a
string with the components separated by semicolon.

'Type' : 'combo',

'Unit' : 'solid;pore',

table

A variable of type 'table' will transform the values entered in the Parameters dialog
into a list. The number of columns is defined with the key 'Unit'. There, the types for
the different columns must be given as a list. Available column types are 'int', 'float'

and 'string'. The column headers are also given as a list of strings and are optional.

In the Parameters dialog a new row is added as soon as at least one value is entered

in each existing row.

In the following example, three columns are given. Here, the values in the first column
must be integers, the values in the second column float and the values in the third

column string, as defined for the key 'Unit'. The 'BuiltinDefault' values define two
rows in the table.

'Variable1' : {

 'Name' : 'gd_table',
 'Label' : 'Variable',

 'Type' : 'table',

 'Unit' : ['int','float','string'],

 'ColumnHeaders' : ['column 1', 'column 2', 'column3'],

 'BuiltinDefault' : [1, 2.0, 'three', 4, 5.0, 'six']

}

labelgroup

A variable of type 'labelgroup' defines a group within the Parameters dialog. The

key 'Member' is mandatory and defines which of the following variables will belong
to the group. The members have to be given in a list, containing the members name
as a string. The 'BuiltinDefault' must be True. The members are defined separately

as variables and can have any type.

In the following example, a group with two members is defined in 'Variable1'. The

first member is defined as 'Variable2' as type 'double' and the second member is

Parameter macros for parameter studies – Available variable types

GeoDict 2024 User Guide 47

defined as 'Variable3' as type 'string'. Their names 'member1' and 'member2'

are given in the list for the key 'Member'.

Variables = {

 'NumberOfVariables' : 3,

 'Variable1' : {

 'Name' : 'gd_labelgroup',
 'Label' : 'Variable',

 'Type' : 'labelgroup',

 'Member' : ['member1', 'member2'],

 'BuiltinDefault' : True

 },

 'Variable2' : {

 'Name' : 'member1',

 'Label' : '1st member of group',

 'Type' : 'double',

 },

 'Variable3' : {

 'Name' : 'member2',

 'Label' : '2nd member of group',

 'Type' : 'string',

 }}

boolgroup

A variable of type 'boolgroup' defines two groups within the Parameters dialog.

Checking or not checking the checkbox decides which group is shown. The members
have to be defined as separate variables and can have any type. The names must be
given for the key 'Member' for the boolgroup variable, as a dictionary, consisting of

the keys 'true' and 'false' and the respective group members as a list.

In the following example, only one group is defined. This results in an empty group if

the checkbox is not checked, corresponding to the not given value 'false'.

GeoPy scripting to automate GeoDict simulations

48 GeoDict 2024 User Guide

Variables = {

 'NumberOfVariables' : 2,

 'Variable1' : {

 'Name' : 'gd_boolgroup',
 'Label' : 'Variable',

 'Type' : 'boolgroup',

 'Member’ : {'true' : ['member']},

 'BuiltinDefault' : True

 },

 'Variable2' : {

 'Name' : 'member',

 'Label' : 'member of group',

 'Type' : 'double',

 }}

combogroup

A variable of type 'combogroup' defines multiple groups. The selection from the pull-

down menu decides which group is displayed. The list defining the content of the pull-
down menu must be defined for the key 'Unit'. The values must be given as a string,
values separated by comma. The members of the groups must be defined as separate

variables and can have any type. The names must be given for the key 'Member' for
the combogroup variable, as a dictionary, consisting of the defined keys (values in

the pull-down menu, defined in 'Unit') and the respective group members as a list.

In the following example two groups can be selected. Observe how the available

parameters change according to the selected group in the Parameters dialog.

Variables = {

 'NumberOfVariables' : 4,

 'Variable1' : {

 'Name' : 'gd_combogroup',
 'Label' : 'Variable',

 'Type' : 'combogroup',

 'Unit' : 'group1;group2',

 'Member' : {'group1' : ['onlymember'],

 'group2' : ['member1', 'member2']},

 ‘BuiltinDefault’ : True

 },

 'Variable2' : {

 'Name' : 'onlymember',

Parameter macros for parameter studies – Available variable types

GeoDict 2024 User Guide 49

 'Label' : 'Only member of 1st group',

 'Type' : 'double',

 },

 'Variable3' : {

 'Name' : 'member1',

 'Label' : '1st member of 2nd group',

 'Type' : 'int',

 },

 'Variable4' : {

 'Name' : 'member2',

 'Label' : '2nd member of 2nd group',

 'Type' : 'int',
 }}

GeoPy scripting to automate GeoDict simulations

50 GeoDict 2024 User Guide

PYTHON SCRIPTING IN GEODICT

GeoDict supports Python scripting. By selecting Macro → Execute Macro/Script…

a *.py file can be selected and then executed by a built-in Python 3.11 interpreter.
All of the Python standard library should be usable from within a Python macro.

A very helpful official Python tutorial can be found at

https://docs.python.org/3.11/tutorial/.

In addition, a special object called gd is available everywhere within a Python macro.

The whole GeoDict API (Application Programming Interface) is exposed via the gd-
object.

GEODICT APPLICATION PROGRAMMING INTERFACE (API)

In the following, the methods provided by the built-in gd-object are documented. The
interface allows running any GeoDict command that a macro can execute.

GENERAL FUNCTIONS

GD.RUNCMD(CMDNAME, ARGS, VERSIONSTRING)

This allows to run any GeoDict command that a macro can execute.

◼ cmdName is the name of the command as they appear in the Session Macro

dialog described on page 24, e.g. "GeoDict:LoadFile" to load a GDT file.

◼ args is a python dictionary holding the arguments (see below)

◼ versionString is a string containing the GeoDict version for which this macro was
written, e.g. "2024"

For commands that produce GDR files, the function returns the name of the generated

file, which can be different from the name specified if a file of the same name did
already exist, e.g. "PoreSizes_no1.gdr". It is therefore recommended to use the

returned file name when analyzing the results.

In the following example, the function is used to terminate GeoDict. For other
examples, see also below under the getViewStatus() or the getBuiltinDefaults()

command.

gd.runCmd("GeoDict:Terminate", {}, "2024") # terminates GeoDict, the

dictionary for this command is

empty

GD.RUNCMDIGNOREEXTRAKEYS(CMDNAME, ARGS, VERSIONSTRING)

Works similar to gd.runCmd, but ignores unnecessary keys in the Python dictionary
of the command.

GD.RUNCMDFROMGPS(GPS_FILE_PATH)

Executes a command from a *.gps file, that can be obtained directly from a dialog.
The command has no return value. For example, if the desired settings for a fiber

structure are saved from the FiberGeo Create Options
dialog into a *.gps file with the name FiberGeo.gps, the fiber
structure can be created with this command:

https://docs.python.org/3.11/tutorial/

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 51

gd.runCmdFromGPS("FiberGeo.gps") # generates a fiber structure from

a *.gps file

GD.MSGBOX(BASIC PYTHON VALUE)

Displays a simple message box containing the given basic Python value (string,
integer, float, …) and an OK button. The execution continues after clicking OK. This

function is useful for debugging. The command has no return value. Example:

gd.msgBox("Hello World")

GD.SHOWGDR(PATH)

This will open the given GDR file contents within a GeoDict dialog. The command has
no return value. For example, if a result file with the name Example.gdr is saved, it

can be opened in the Result Viewer with this command:

gd.showGDR("Example.gdr") # opens the file in the Result

Viewer

GD.GETBLOCKER()

Get a Blocker object to prevent GeoDict Dialogs from showing up. Use this function
via 'with' keyword. For example, if saving images from a macro from different

structures with a solid ID not shown, GeoDict will ask for every structure loading, if
this material ID should be visualized. But the blocker command prevents the dialogs

from showing up:

with gd.getBlocker(): # blocks GeoDict dialogs while the

following indented section is

executed

 for i in range(3): # loops over the indices 0,1,2

 gd.runCmd("GeoDict:LoadFile", {'FileName' :

f'example{i}.gdt'})

loads a GeoDict structure file

 SaveThreeDImage_args = { # GeoPy dictionary containing the

parameters to save an image

 'FileName' : f'example{i}.png',

 'Resolution': {'Mode' : 'Current'},

 'IncludeTransparency' : False}

 gd.runCmd("GeoDict:Save3DImage",

SaveThreeDImage_args)

GeoDict command to save an image

GD.GETDOMAIN(VERSIONSTRING)

Gets the settings of the domain of the currently loaded geometry and returns it as a

Python dictionary. This dictionary contains information about domain size, origin,
voxel length, material of ID00, periodicity and overlap settings, if available.

domain = gd.getDomain('2024') # gets the domain parameters as a

dictionary

nx = domain['Domain']['NX'] # assigns the number of voxels in

x-direction to the variable nx

GeoPy scripting to automate GeoDict simulations

52 GeoDict 2024 User Guide

vl = domain['Domain']['VoxelLength'] # assigns the voxel length to

variable vl

material = domain['Domain']['Material']['Name'] # assigns the material name of

material ID00 to variable

material

print(f'The loaded structure has {nx} voxels in

X-direction, a voxel length of {vl} and

contains the material {material}.')

show message in the console

GD.GETVOLDIMENSIONS()

Returns a 3-tuple (nx,ny,nz) containing the size of the currently loaded geometry in
number of voxels. Returns None if no geometry is present. This command can be

assigned to individual variables in Python using tuple deconstructions as follows:

nx, ny, nz = gd.getVolDimensions() # assigns the number of voxels in x-

direction to the variable nx,

and the number of voxels in y-

and z-direction to ny and nz,

respectively

GD.GETVOXELLENGTH()

Returns the voxel length of the current structure in meters. Example:

vl = gd.getVoxelLength() # assigns the voxel length to the

variable vl

GD.GETVOXELCOUNTS2D(DIRECTION:INT, MATERIAL INDEX : INT)

Returns a list of the slice-wise voxel counts in the given direction for the given material

ID. Returns None if no geometry is present. Example:

voxelCounts = gd.getVoxelCounts2D(2,1) # get the number of voxels of

material ID 1 in Z-direction for

each slice and assign them as a

list to the variable voxelCounts

ZSlice_5 = voxelCounts[4] # compute the total number of voxels

in the structure and assign it

to the variable TotalVoxels

gd.msgBox(f"In slice 5 {ZSlice_5} voxels have

MaterialID 1.")

show message dialog

GD.GETVOXELCOUNTS3D()

Returns a 256-element list of voxel counts for each color (material index) for the
currently loaded geometry. Returns None if no geometry is present. Example:

nx , ny, nz = gd.getVolDimensions() # get the number of voxels in all

three directions and assign them

to variables

TotalVoxels = nx * ny * nz # compute the total number of voxels

in the structure and assign it

to the variable TotalVoxels

Voxels = gd.getVoxelCounts3D() # gets list of voxel counts for

material IDs

ID_1 = Voxels[1]/TotalVoxels * 100

computes volume percentage of

material ID and assign it to

variable ID_1

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 53

gd.msgBox(f"MaterialID 1 is assigned to {ID_1}%

of the structure.")

show message dialog of result

GD.GETSOLIDVOLUMEFRACTION()

Returns the solid volume fraction of the currently loaded geometry.

svp = gd.getSolidVolumeFraction() * 100

compute solid volume percentage

gd.msgBox(f"The SVP is {svp}%.") # show message dialog of result

GD.GETVIEWSTATUS(VERSIONSTRING)

Returns the current view status (settings for rendering). It has the same format as

the argument for the GeoDict:SetViewStatus command in Python files.

It is useful to change render settings based on the current settings, e.g. to change
the angle of the camera:

d = gd.getViewStatus("2024") # get the current rendering settings

d["Camera"]["Camera3D"]["Rotation"]=[38,22,-65] # change angle of camera

gd.runCmd("GeoDict:SetViewStatus", d, "2024") # update settings

GD.GET2DVIEWASPLOT(INT DIRECTION, INT SLICE, BOOL ORIENTATION)

Returns the 2D view of the loaded structure as a Python dictionary. This dictionary
can be used to plot the given slice in a custom GeoDict result file (*.gdr). How to
create a custom result file is explained on page 84. Input the desired view direction,

slice and if the image orientation should be Top to Bottom (True) or Bottom to Top
(False). The view direction must be given as integer, where 0 = X, 1 = Y and 2 = Z.

In the following example a result file is generated only containing a plot from the 50th
slice of the loaded structure viewed in X-direction and bottom to top.

import gdr # import the module gdr to generate

custom result files

plotParameters = gd.get2DViewAsPlot(0,50,False) # get the current 2D view in X-

direction of slice 50 in bottom

to top orientation

resultfile = gdr.GDR("NewResultFile") # create custom result file

NewResultFile.gdr

postParameters = {

 'Plots' : {

 'NumberOfPlots' : 1,

 'Plot1' : plotParameters}}

define Python dictionary for gdr

resultfile.postMap = postParameters # add post processing map to gdr

containing the defined plot

resultfile.write() # write result file

GD.GETBUILTINDEFAULTS(STRING COMMANDNAME)

Returns the built-in default argument dictionary for a command. This can then be
modified and passed to runCmd. Example:

Create_args =

gd.getBuiltinDefaults("FiberGeo:Create")

get the arguments for

"FiberGeo:Create"

GeoPy scripting to automate GeoDict simulations

54 GeoDict 2024 User Guide

Create_args['SolidVolumePercentage'] = 20 # change solid volume fraction to

20%

gd.runCmd("FiberGeo:Create", Create_args) # version is omitted - defaults to

latest

GD.GETCURRENTSETTINGS(STRING COMMANDNAME)

Returns the current settings argument dictionary for a command. This can then be
modified and passed to runCmd. Example:

Create_args =

gd.getCurrentSettings("FiberGeo:Create")

get the arguments for

"FiberGeo:Create"

Create_args['SolidVolumePercentage']=(20, '%') # change solid volume fraction to

20%

gd.runCmd("FiberGeo:Create", Create_args) # version is omitted - defaults to

latest

GD.SETCURRENTSETTINGS(STRING COMMANDNAME, PARAMETERS DICTIONARY, VERSION STRING)

Sets the settings for the given GeoDict command in the corresponding options dialog.
Example:

Create_args =

gd.getCurrentSettings("FiberGeo:Create")

get the arguments for

"FiberGeo:Create"

Create_args['SolidVolumePercentage']=(20, '%') # change solid volume fraction to

20%

gd.setCurrentSettings("FiberGeo:Create",

Create_args, "2024")

set the changed settings in the

FiberGeo Options dialog

GD.SETTEMPERATURE(TEMPERATURE FLOAT, UNIT STRING)

Sets the current temperature for the simulation solvers to change the constituent
material properties accordingly. The available units are Celsius, Kelvin and
Fahrenheit.

gd.setTemperature(15,"Celsius") # set the temperature to 15 °C

GD.GETCONSTITUENTMATERIALS()

Returns the map of the current constituent materials as Python dictionary. Example:

Materials = gd.getConstituentMaterials() # get dictionary of constituent

materials and assign it to

variable Materials

ID_0_Type = Materials['Material00']['Type'] # get type of material ID 0 and

assign it to variable ID_0_Type

gd.msgBox(f"Material ID 00 is of type

{ID_0_Type}.")

show message dialog of result

GD.GETDATABASEMATERIAL(STRING NAME)

Returns the information of the given material in the GeoDict material database as
Python dictionary

Material_Air = gd.getDataBaseMaterial("Air") # get the data base

information for air

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 55

air_dens = Material_Air["Flow"]["MaterialLaw1"]

["Density"][0][6]

get the sixth entry in the

density list for air

(counting starts with 0)

air_dens_u =

Material_Air["Flow"]["MaterialLaw1"]["Density"][1]

get the unit for the density

air_temp = Material_Air["Flow"]["MaterialLaw1"]

["Temperature"][0][6]

get the sixth entry in the

temperature list for air

(counting starts with 0)

air_temp_u = Material_Air["Flow"]["MaterialLaw1"]

["Temperature"][1]

get the unit for the

temperature

gd.msgBox(f"At {air_temp} degrees {air_temp_u} the

density of air is {air_dens} {air_dens_u}.")

show message dialog

GD.GETMATERIALDATABASEFOLDER()

Returns the folder path of the material data base folder containing the defined
materials and their parameters as a string.

databasefolder = gd.getMaterialDataBaseFolder () # get the data base folder path

import os # import the Python module os,

which has many useful functions

regarding file directories

foldercontent = os.listdir(databasefolder) # get the content of the folder as

a list of strings

print(foldercontent) # print the list to the GeoDict

console, resulting in a list of

*.txt files corresponding to

the contained materials

GD.GETGADMODE()

Returns the GAD mode as an integer.

◼ 0: The current voxel geometry only consists of GAD-objects.

◼ 1: The current voxel geometry contains not only GAD-objects.

◼ 2: No GAD-objects are loaded.

gad_mode = gd.getGADMode() # assign GAD mode to variable

gad_mode

if gad_mode != 2: # condition: if the GAD mode is not

equal to 2, i.e. 0 or 1, the

following indented section is

executed

 gd.msgBox(f"The structure contains GAD

objects.")

show message dialog

else: # if the condition above is not

true, i.e. the GAD mode is 2,

the following indented section

is executed

 gd.msgBox(f"The structure doesn’t contain GAD

objects.")

show message dialog

GD.GETNUMBEROFGADOBJECTS()

Returns the number of loaded GAD objects as an integer. Example:

GAD_number = gd.getNumberOfGADObjects() # get number of GAD objects

GeoPy scripting to automate GeoDict simulations

56 GeoDict 2024 User Guide

gd.msgBox(f"The structure contains {GAD_number}

GAD objects.")

show message dialog

GD.GETGADOBJECT(INT ID, VERSIONSTRING)

Returns the settings of the GAD object with the given index id (first object has id 1)
as a Python dictionary. For an example see getSelectedGADObjects() below.

GD.GETSELECTEDGADOBJECTS()

Returns a list containing the IDs of the currently selected GAD objects.

For the following example, a structure has to be loaded and one or more GAD Objects

must be selected:

GAD_Selection = gd.getSelectedGADObjects() # get IDs of selected gad objects

GAD_ID = GAD_Selection[0] # choose smallest selected GAD

object ID

GAD_Object = gd.getGADObject(GAD_ID," 2024") # get the settings of the

corresponding gad object

gd.msgBox(GAD_Object['Type']) # show type of selected GAD_object

in message box, e.g. sphere,

ellipsoid, circular fiber, …

GD.GETSELECTEDVOXELS()

Returns the positions of the currently selected voxels as a list of tuples (x,y,z). Note,
that the positions returned with this command are not exactly the same, as given in
the GUI. That is because the positions count starts with (0,0,0) for the command

getSelectedVoxels() and with (1,1,1) for the GUI.

For the following example a structure has to be loaded and one or more voxels must

be selected:

Voxels = gd.getSelectedVoxels() # assign list of selected voxels to

variable Voxels

gd.msgBox(f"The first selected voxel is located

at position {Voxels[0]}")

shows message box

GD.GETSETTINGSFOLDER()

Returns the settings folder as a string.

Windows: c:\user\%USERNAME%\GeoDict2024

Linux: ~/.geodict2024

SettingsFolder = gd.getSettingsFolder() # assigns the file path of the

settings folder to the variable

SettingsFolder

gd.msgBox(f"The GeoDict settings can be found in

\n {SettingsFolder}")

shows the settings folder in a

message box

GD.GETINSTALLATIONFOLDER()

Returns the directory that contains the GeoDict executable as a string.

InstallationFolder = gd.getInstallationFolder() # assigns the file path of the

installation folder to the

variable InstallationFolder

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 57

gd.msgBox(f"The GeoDict executable is found in

\n {InstallationFolder}")

shows the installation folder in

a message box

GD.GET3RDPARTYBINFOLDER() / GD.GETRESOURCESFOLDER() / GD.GETGDMODULESFOLDER()

Gets the directory that contains the 3rd party binaries / GeoDict resources / GeoDict
module folders as a string. Usually, for non-developers all three data groups are

contained in the GeoDict installation folder. Thus, use getInstallationFolder() instead.

GD.GETGDFOLDER()

Gets the directory that contains the GeoPy API files as a string.

GD.GETGDGEOAPPSFOLDER()

Gets the directory that contains the built-in GeoDict GeoApps as a string.

GD.GETGDVIDEOMACROFOLDER()

Gets the directory that contains the built-in video macros as a string.

GD.GETMACROFILEFOLDER()

Returns the directory that contains the macro file as a string. Example:

macrofolder = gd.getMacroFileFolder() # assigns the file path of the

macro to the variable

macrofolder

gd.showGDR (macrofolder + "/example.gdr") # opens the GeoDict result file

“example.gdr” located in the

same folder as the macro.

GD.GETMACROFILENAME()

Returns the macro name as a string. Example:

macroname = gd.getMacroFileName() # assigns the macro name to the

variable macroname

gd.msgBox (f"{macroname} is running.") # shows the macrofilename in a

message box.

GD.GETPROJECTFOLDER()

Returns the current project folder of GeoDict as a string. Example:

projectfolder = gd.getProjectFolder() # assigns the file path of the

current project folder to the

variable projectfolder

gd.showGDR (projectfolder + "/example.gdr") # opens the GeoDict result file

“example.gdr” located in the

current project folder

GD.GETHOSTNAME()

Returns the name of the host as a string. Example:

Host_name = gd.getHostName() # assigns the host name to the

variable Host_name

gd.msgBox (f"The host is {Host_name}") # show message dialog

GeoPy scripting to automate GeoDict simulations

58 GeoDict 2024 User Guide

GD.GETSTANDARDFILEHEADER()

Returns the Python dictionary for the standard header that is used in recorded macros

as a string.

Header = gd.getStandardFileHeader() # assigns the string of the standard

file header to the variable

Header

gd.msgBox(Header) # show the standard file header in

a message dialog

GD.GETVERSION()

Returns the current GeoDict version as a string. Example:

Version = gd.getVersion() # assigns the version as a string to

the variable Version

gd.msgBox (f"The current GeoDict version is

{Version}")

show message dialog

GD.GETVERSIONINFO()

Returns the Python dictionary for the standard header that is used in recorded
macros, containing the GeoDict version, revision and release date. Example:

Header = gd.getVersionInfo() # assigns the standard file header

to the variable Header

gd.msgBox (f"The current GeoDict revision is

{Header['Revision']}")

show the current revision in a

message dialog

GD.GETSTRUCTURE()

Returns the currently loaded structure as a 3D 8-bit numpy array. Each entry

corresponds to a voxel and contains its material ID (0-255). The following example
writes the currently loaded structure into a *.csv file, where the first row contains the

volume dimensions nx, ny and nz, followed by rows each containing the voxel values
along a single Z-row.

with open("Structure.csv", "w") as fd: # open output file for writing

(create new file with the given

name, if file does not exist)

and assign it to fd. The file

stays open for the following

indented section.

 Structure = gd.getStructure() # assign 3D numpy array of currently

loaded structure to variable

Structure. data type is 8-bit

unsigned (uint8)

 nx, ny, nz = gd.getVolDimensions() # assign structure volume dimensions

to variables nx, ny and nz

 fd.write(f"{nx},{ny},{nz}\n") # write dimensions of volume in

first row

 for x in range(nx): # loop over all x-coordinates

 for y in range(ny): # loop over all y-coordinates

 row = Structure[x,y,:] # assign the z-row with x-coordinate

x and y-coordinate y to the

variable row

 strList = [f"{voxel_value}" for

voxel_value in row]

transform all entries of the row

in strings and write them in the

string list strList

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 59

 fd.write(",".join(strList) + "\n") # writes all entries of strList in

the csv file, separated by

commas, adds a new line at the

end of the list

For example, the 3d numpy array [[[2, 1], [4, 3]], [[7, 5], [8, 6]]] of a 2x2x2
structure is written into a csv file structured as follows:

GD.GETSTRUCTUREDESCRIPTION()

Returns a string, containing the structure description of the currently loaded
structure. The description is to be found in the title bar of GeoDict or in the Project

Status Section on the left, when the Structure settings are unfolded. It displays
how the geometry was generated or saved.

For an example, see underneath the getStructureHash64 command.

GD.GETSTRUCTUREHASH()

This function is deprecated, use gd.getStructureHash64() instead.

GD.GETSTRUCTUREHASH64()

Returns the new 64-bit structure hash (Structure ID) of the currently loaded
structure as an integer. This can be used e.g. to determine if a GDR result file
corresponds to a given structure. This is a more robust unique identifier than
getStructureHash(). Example:

import stringmap # imports the Python module

stringmap

gdr = stringmap.parseGDR('FiberGeo.gdr') # assign the result file as a string

to the variable gdr

GDR_Hash_64 = gdr['Geometry:Hash64'] # assign the ID of the structure

corresponding to the result file

to the variable GDR_Hash

Structure_Hash_64 = gd.getStructureHash64() # assign the ID of the loaded

structure to the variable

Structure_Hash

GeoPy scripting to automate GeoDict simulations

60 GeoDict 2024 User Guide

if int(GDR_Hash_64) == Structure_Hash_64: # condition: if the IDs are equal,

the following indented section

is executed

 gd.msgBox("The loaded structure belongs to the

result file FiberGeo.gdr")

show message dialog

else: # if the IDs are not equal, the

following indented section is

executed

 gd.msgBox("The loaded structure does not belong

to the result file FiberGeo.gdr.")

show message dialog

GD.GETSTRUCTUREFILENAME()

Returns the structure file name of the currently loaded structure as a string. Example:

filename = gd.getStructureFileName() # assigns the currently loaded

structure’s file name to the

variable filename

gd.msgBox(f"Currently {filename} is loaded.") # show message dialog

GD.GETNUMBEROFTRIANGLES()

Returns number of triangles in the current surface mesh. If no mesh is loaded 0 is

returned. Example:

Number = gd.getNumberOfTriangles() # assigns the number of triangles to

the variable Number

gd.msgBox (f"The number of triangles is

{Number}")

show message dialog

GD.GETTRIANGULATIONBOUNDINGBOX()

Returns the bounding box of the current triangulation. If no triangulation exists
{{0,0,0}, {0,0,0}} is returned. Example:

Box = gd.getTriangulationBoundingBox() # assigns the host name to the

variable Host_name

X = Box[1][0]*10**6 # get the first entry of the second

dictionary, i.e. the X-

dimension in m, transform it to

µm and assign it to the variable

X

gd.msgBox (f"The bounding box has {X} µm in X-

direction.")

show the result in a message

dialog

GD.GETVOLUMEFIELDSINFO()

Returns a list of dictionaries describing the currently loaded Volume Fields (Result

fields, e.g. Flow results). The "index" field of each entry gives the index to use for the
following function. For an example, see below under the getVolumeField command.

GD.GETVOLUMEFIELD(INDEX OR NAME)

This function returns a numpy array for a currently loaded Volume Field. There are

separate Fields for each component, e.g. for a flow field there are separate fields for
VelocityX, VelocityY, VelocityZ and Pressure. If the needed index or name is unknown,

the previous function gd.getVolumeFieldsInfo can be used to obtain the desired
information. For example, this function can be used to compute statistics from the

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 61

results. In the following example for the first of the loaded volume fields a statistic

over the Z-layers is plotted in a graph, using another GeoDict API function. A volume
field must be loaded and, if the volume field is a simulation result, also the
corresponding structure.

VolumeInfo = gd.getVolumeFieldsInfo() # get list of dictionaries of loaded

Volume Fields and assign it to

variable VolumeInfo

print(VolumeInfo) # print all data contained in

VolumeInfo to console / logfile

nx, ny, nz = gd.getVolDimensions() # get the number of voxels in X-, Y-

and Z-direction and assigning

the numbers to variables

Structure = gd.getStructure() # assign 3D numpy array describing

the loaded structure to the

variable Structure

Name = VolumeInfo[0]['name'] # assign the name of the first

volume field to the variable

Name

VolumeField = gd.getVolumeField(Name) # assign the numpy array describing

the volume field to the variable

VolumeField

Statistic = [] # Create empty list to store the

statistical values

for k in range(nz): # loop over all Z-layers

 value_sum = 0 # creating variable value_sum to sum

up the result values

 value_count = 0 # creating variable value_count to

count the summands

 for j in range(ny): # loop over all Y-layers

 for i in range(nx): # loop over all X-layers

 if Structure[i][j][k] == 0: # condition: if the kth Z-value in

the jth Y-column of the ith X-

layer is pore space (ID 0), the

following indented section is

executed

 value_sum = value_sum +

VolumeField[i][j][k]

add all pore space result values

of the kth Z-layer to the sum

value_sum

 value_count = value_count + 1 # count the summands of value_sum

 meanVal = value_sum / value_count # compute mean value of all pore

space result values in the kth

Z-layer and assign it to the

variable meanVal

 Statistic.append(meanVal) # append the mean value of the Z-

layer to the Statistic list

gDlg = gd.makeGraphDialog() # create a graph dialog object

graph = gDlg.addGraph(Name, "Z layers", Name) # add a graph object with the name

of the volume field as title and

Y-axis legend and Z-layers as X-

axis legend

Z_layers = list(range(1, nz + 1)) # writes the Z-layer numbers 1, 2,

…, nz-1, nz into a list named Z-

layers

graph.addData(Z_layers, Statistic, Name) # add a single dataset with the Z-

layers as X-values, the mean

result values as Y-values and

GeoPy scripting to automate GeoDict simulations

62 GeoDict 2024 User Guide

the name of the volume field as

legend to this graph

gDlg.run() # show graph dialog

GD.GETPROGRESS(STR TEXT, INT STEPS, STR SPLASH, BOOL GRAPH, BOOL HAS STOP BUTTON)

This command has no return value but creates a progress bar object that is shown in
GeoDict with the passed number of steps and the passed text as description. The

progress bar remains visible until the object runs out of scope or is explicitly deleted.
It is possible to use the progress bar as a context manager.

The input parameters are:

◼ Progress bar name as a string (obligatory)

◼ Total number of steps as an integer value (obligatory)

◼ Splash screen as a string. Displays the given splash screen in the progress
dialog. Entering a random string displays the default GeoDict splash screen. Omit

parameter or enter an empty string ('') to obtain a progress dialog without a

splash screen.

◼ Add a graph to progress dialog if True is entered. No graph is displayed if the
parameter is omitted or set to False.

◼ Add a stop button to the progress dialog if set to True. No stop button will be

added if parameter is omitted or set to False.

The progress bar has the following functions:

◼ update(int step) updates the progress bar to the specified step.

◼ updateWithGraph(int step, str X-axis label, X-value, Y-axis label, Y-value)
updates the progress bar to the specified step and also displays and updates a
graph with the given values

◼ wasCancelled() checks if the cancel button was hit.

◼ wasStopped() checks if the stop button was hit.

Example:

progress = gd.getProgress("Test Progress", 100) # create a progress bar about 100

steps that is named “Test

Progress”

for i in range(101): # start a loop doing the same tasks

for i = 0, …, 100

 progress.update(i) # update the progress bar to step i

 if progress.wasCancelled():

 break

condition that if the Cancel

button was hit, the loop is

stopped

del progress # delete the progress bar

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 63

progress2 = gd.getProgress("Test Graph

Progress", 80, '', True, True)

create a second progress bar

about 80 steps that is named

“Test Graph Progress”. A graph

and a Stop button will be added

to the progress dialog

for i in range(81): # start a loop doing the same tasks

for i = 0, …, 80

 x = i # set X-value for graph to

iteration value

 y= x**2 # set Y-value for graph to x²

 progress2.updateWithGraph(i, "X-Axis", x, 'Y-

Axis', y)

update the progress bar to step i

and the graph with the value

pair (x,y)

 if progress2.wasStopped():

 break

condition that if the Stop button

was hit, the loop is stopped

del progress2 # delete the progress bar

GD.SETSTRUCTURE(3D NUMPY ARRAY, FLOAT VOXEL LENGTH)

This command has no return value but takes a 3D numpy array containing values
between 0 and 255, defining the material ID of the described voxel, and sets it as

GeoDict's current structure. This causes volume fields to be unloaded. For example,
if a 3D structure is saved as a *.csv file, structured in the same way as in the example

GeoPy scripting to automate GeoDict simulations

64 GeoDict 2024 User Guide

for gd.getStructure above, this structure can be visualized in GeoDict with the

gd.setStructure command:

import numpy as np # import Python module numpy to

create numpy arrays

with open("Structure.csv", "r") as fd: # open input file for reading and

assign it to fd. The file is

closed after the last indented

line following

 first_row = fd.readline().strip() # read first row and remove newline

\n

 first_row_list = first_row.split(",") # assign list of first_row entries

splitted by commas to variable

first_row_list

 nx, ny, nz = int(first_row_list[0]),

int(first_row_list[1]),

int(first_row_list[2])

assign the volume dimensions

contained in the first row to

variables nx, ny and nz

 voxel_value_list = [] # an empty list is assigned to

variable voxel_value_list to

store integer values of all

voxels

 for line in fd: # loop over all lines in the *.csv

file, starting with the second

row, as the first was already

read

 line_stripped = line.strip() # remove whitespace before and after

line. in this case, remove

newline at end of line.

 LineList = line_stripped.split(",") # assign a list of all entries from

line separated by commas to

variable LineList

 LineList = [int(x) for x in LineList] # convert each voxel_value string to

an integer number

 voxel_value_list += LineList # append voxel values of this row to

list

 voxel_values = np.array(voxel_value_list,

dtype=np.uint8)

convert voxel values to numpy

array. data type needs to be 8-

bit unsigned (np.uint8) for

GeoDict structures

 Structure = voxel_values.reshape(nx, ny, nz) # reshape the 1-dimensional array

voxel_values to a 3D array of

given dimensions nx x ny x nz

 gd.setStructure(Structure, 1e-6) # visualize the structure defined in

the csv file in GeoDict, by

passing the 3D numpy array and

assigning voxel length 1µm

GD.SETSTRUCTUREDESCRIPTION(STRING DESCRIPTION)

Sets the description text for the currently loaded structure.

Example:

Struc_Des_old = gd.getStructureDescription() # get current structure description

gd.setStructureDescription("New Description") # changes description to “New

Description”

Struc_Des_new = gd.getStructureDescription() # gets new structure description

gd.msgBox(f"The structure description was

changed from {Struc_Des_old} to

{Struc_Des_new}.")

outputs the description change

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 65

GD.UPDATEGEOMETRY()

This command has no return value but updates the geometry renderer.

GD.UPDATEVOLUMEFIELD(STRING PATH)

This command has no return value but updates the visualization of a volume field.

GD.MAKEDIALOG(STRING KEY, STRING TITLE)

Creates an input dialog object to query the user for parameters. It is used as follows:

◼ Create a dialog object: gd.makeDialog(key, title)

⚫ key is used to store dialog settings in the settings map. Use a unique key for

each dialog unless you are re-using the same dialog and want their settings to
affect each other.

⚫ title is an optional argument giving the window title of the dialog.

dlg = gd.makeDialog("MyDialog", "Dialog

Example")

create a dialog object

◼ Add (input) fields to the dialog, e.g.:

dlg.addBoolInput("myBooleanParameter", "This is a checkbox", init=True,

tooltip="This is a tooltip")

The returned value is “True” if the checkbox is checked and “False” if not

dlg.addIntegerInput("myIntegerParameter", "This is an integer input", min=5, max=10,

init=6, tooltip="This is a tooltip")

The returned value is the inserted integer

dlg.addUintegerInput("MyUintInput", "This is an uinteger input", min = -5, max =

5, init=0, tooltip="Choose an integer parameter within the boundaries")

dlg.addFloatInput("myFloatParameter", "This is a float input", min = -3.5, max =

5.2, init=2.1, tooltip="This is a tooltip")

dlg.addTextInput("myStringParameter", "This is a free form text input box",

init="This is a String", tooltip="This is a tooltip")

dlg.addFileInput("myFileSelection", "This allows you to browse for files having a

given extension", "gdt", init="File.gdt", tooltip="This is a tooltip")

dlg.addFolderInput("MyFolderInput", "This allows you to browse for a folder")

dlg.addComboInput("myComboBox", "A combobox to select one of a list of items",

["first item", "second item", "third item"], tooltip= "This is a tooltip")

The returned value is the index of the selected item, e.g. 0 for the first item,

1 for the second etc.

dlg.addComboInputString("ComboString", "A combobox to select one item from a list",

["first item", "second item", "third item"])

The returned value is the string of the selected item

dlg.addMaterialInput("MyMaterialInput", "This allows you to choose a material from

the material data base")

dlg.addTableInput("MyTableInput", "This is a table input.", types = "int,float",

columnHeaders=["left","right"], init=[[1,2.0],[3,4.0]])

◼ These arguments are optional keyword arguments:

• the init argument gives the initial value for the field (the built-in default).

GeoPy scripting to automate GeoDict simulations

66 GeoDict 2024 User Guide

• tooltip specifies a description string that is shown when the user hovers
the mouse over the input field.

• min/max arguments restrict the range of input (only available for integer,
uinteger and float input).

◼ It is also possible to write e.g.:

dlg.addIntegerInput("myNewIntegerParameter", "This is an integer parameter without

limits but with a default value", init=42, tooltip="Enter some value here.")

◼ Free-form text can also be added using this function:

dlg.addText("Any arbitrary text", 20, True) # add bold text to the dialog with

font size 20

dlg.addText("More arbitrary text", 10, False) # add text to the dialog with font

size 10 and not bold

◼ Fields can be grouped within a box as follows:

dlg.beginGroup("My Group") # start the group for the box

dlg.addText("This text will be inside the group

box")

add content (text, input fields, …)

dlg.endGroup() # end the group

⚫ Furthermore, images can be added to the dialog box as 3D numpy arrays

from PIL import Image # import Python package to edit images

import numpy as np # import Python package to use arrays

image = Image.open("image.png") # open desired image, if image is not

contained in project folder, complete

file path must be given

w,h = image.size # get size of image

image = image.resize((100,round(100*h/w))) # resize image to fit in the dialog,

without changing aspect ratio

I = np.asarray(image) # transform image to a 3D numpy array

dlg.addImage(I) # add image to the dialog

◼ Execute the dialog:

result = dlg.run()

Python scripting in GeoDict – GeoDict API – General functions

GeoDict 2024 User Guide 67

◼ If the user clicks Cancel, result will be None.

◼ Otherwise, result will be a dictionary containing the entered values, e.g.

gd.msgBox("The user has selected the file:" + result["myFileSelection"])

◼ Save the dialog settings as a *.gps file after calling run(). Define the desired file
path as a string:

dlg.saveSettings("Example/MyFirstCustomDialogSettings.gps")

GD.MAKEGRAPHDIALOG()

Graph dialogs allow displaying multiple graphs with multiple data sets per graph.
Usage example:

◼ Create a graph dialog object:

gDlg = gd.makeGraphDialog() # create a graph dialog object

GeoPy scripting to automate GeoDict simulations

68 GeoDict 2024 User Guide

◼ Add graph input:

graph1 = gDlg.addGraph("Graph title", "X-Axis

Legend", "Y-Axis Legend")

add a graph object with the given

title, x-axis legend and y-axis

legend

graph1.addData([1,2,3], [1,2,3], "Linear

function: y = x")

add a single dataset with the

given x values, y values and

legend to this graph

graph1.addData([1,2,3], [1,4,9], "Quadratic

function: y = x^2")

add another dataset

◼ Display the graph dialog:

gDlg.run()

When calling gDlg.run(), the graph dialog is displayed. By right-clicking in the plot
the graphs offer the same features as the ones in the GDR visualization, e.g. the axes
can be rescaled, the data can be exported as a CSV file using the context menu on

each graph object, and the image can be saved as *.png.

Python scripting in GeoDict – GeoDict API – Module specific functions

GeoDict 2024 User Guide 69

IMPORTGEO-VOL SPECIFIC FUNCTIONS

These functions do only work if a gray value image is loaded into ImportGeo-Vol. To
load a gray value image, you need to run an ImportGeo:GetGrayValueImage
command first.

Find examples on how to use these functions in the ImportGeo folder in the GeoDict
installation directory.

GD.IMPORTGEOVOL.GETHISTOGRAM()

Returns the histogram of the currently loaded image as a python list of tuples
containing value and count each. In the following example the list is written into a
*.csv file. If this file is opened with Excel, the gray values are to be found in the first
column and the corresponding counts in the second column:

Histogram = gd.ImportGeoVol.getHistogram() # get list of tuples describing the

histogram and assign it to the

variable Histogram

file = open('Histogram.csv', 'w') # open output file for writing

(create new file with the given

name, if file does not exist)

file.write('Value,Count\n') # write titles for columns in csv

file

for i in Histogram: # loop over all tuples i of

Histogram

 file.write(f'{i[0]},{i[1]}\n') # write values and counts into the

csv file

file.close() # close the csv file

GD.IMPORTGEOVOL.GETNEWIMAGE()

Creates a new 3D gray value image matching the size and bit depth as the original
image and returns it as a numpy array. Only used in ImportGeo custom python image
filters, not in regular macros.

GD.IMPORTGEOVOL.GETNEWIMAGEDIMENSIONS (DIRECTION)

Returns the current gray value image size in voxels in the desired direction, given as
integer (0 for X-direction, 1 for Y-direction, 2 for Z-direction).

nx = gd.ImportGeoVol.getNewImageDimensions(0) # get number of voxels in X-

direction (direction 0)

gd.msgBox(f"In X-direction there are {nx}

voxels.")

show message box

GD.IMPORTGEOVOL.GETNEWIMAGERESIZED(NX,NY,NZ, BOOL IS16BIT)

Creates a new 3D gray value image with the entered dimensions. If is16Bit (True or
False) is not given 8 bits are used. Only used in ImportGeo custom python image

filters, not in regular macros.

GeoPy scripting to automate GeoDict simulations

70 GeoDict 2024 User Guide

GD.GETORIGINALIMAGE()

Returns the currently loaded gray value image as a 3D 8-bit or 16-bit numpy array.

Only used in ImportGeo custom python image filters, not in regular macros.

GD.IMPORTGEOVOL.GETOTSUTHRESHOLD()

Returns the threshold based on OTSU's method of the currently loaded image as an
integer.

OTSU = gd.ImportGeoVol.getOtsuThreshold() # get threshold and assign it to

variable OTSU

gd.msgBox(f"OTSU threshold is {OTSU}") # show message box

GD.IMPORTGEOVOL.GETMULTIOTSUTHRESHOLD()

Returns the thresholds based on OTSU's method of the currently loaded image as list.

OTSU = gd.ImportGeoVol.getMultiOtsuThreshold() # get threshold list and assign it

to variable OTSU

gd.msgBox(f"The OTSU thresholds are {OTSU}") # show message box

GD.IMPORTGEOVOL.GETVOXELLENGTH()

Returns the currently in ImportGeo-Vol set voxel length. For an example, see below
under the setVoxelLength() command.

GD.IMPORTGEOVOL.SETVOXELLENGTH(VOXEL LENGTH)

Changes the currently in ImportGeo-Vol set voxel length to the specified value. This
command has no return value.

vl_old = gd.ImportGeoVol.getVoxelLength() # get voxel length of currently

loaded gray value image and

assign it to variable vl_old

gd.ImportGeoVol.setVoxelLength(1e-6) # set voxel length of currently

loaded gray value image to 1µm

vl_new = gd.ImportGeoVol.getVoxelLength() # assign new voxel length to

variable vl_new

gd.msgBox(f"The voxel length was changed from

{vl_old} to {vl_new}")

show message box

GD.IMPORTGEOVOL.GETROTATIONSUGGESTION(FULL IMAGE, THRESHOLD)

The command returns the rotation suggested for the loaded gray value image.
Therefore, it takes a bool (True or False) if full image should be suggested. If the

parameter is set to “False”, plane is suggested. The parameter for threshold must be
an integer. Example:

Rot = gd.ImportGeoVol.getRotationSuggestion(False) # get rotation suggestion for

suggest plane and assign

it to variable rotation.

Threshold is deprecated -

Python scripting in GeoDict – GeoDict API – Module specific functions

GeoDict 2024 User Guide 71

default to automatic

threshold

Rotation_args =

gd.getBuiltinDefaults("ImageProcessing:Rotation")

get Built-in Defaults for the

Python dictionary of the

GeoDict command Rotation

and assign the dictionary

to variable Rotation_args

Rotation_args['Phi'] = Rot[0] # assign the rotation values to

the corresponding keys in

the rotation dictionary

Rotation_args['Theta'] = Rot[1]

Rotation_args['Psi'] = Rot[2]

gd.runCmd("ImageProcessing:Rotation", Rotation_args) # rotate the gray value image,

version is omitted –

default to latest

GeoPy scripting to automate GeoDict simulations

72 GeoDict 2024 User Guide

FILTERDICT PARTICLE SPECIFIC FUNCTIONS

For the following functions a visualization of particles (from FilterDict or AddiDict)
must be loaded.

GD.GETPARTICLESINFO()

Returns a Python dictionary containing the number of batches and the maximal and

minimal batch animation times. Example:

Info = gd.getParticlesInfo() # assign the Particles Info

dictionary to the variable Info

Num = Info['NumberOfBatches'] # assign the number of batches to

the variable Number

gd.msgBox (f"The number of batches is {Num}.") # show message dialog

GD.GETPARTICLES(VERSIONSTRING)

Returns the Particles object which gives access to currently loaded particle data. To
obtain the data the GeoParticles class is used. It works only in combination with this

command. For an example, see below in the other particle commands.

.GETBATCHINFO(INT BATCH INDEX)

Returns information about a batch of particles as a Python dictionary. The resulting
dictionary contains:

◼ "minTime": start time of batch

◼ "maxTime": end time of batch

◼ "minRadius": minimal particle radius in batch

◼ "maxRadius": maximum particle radius in batch

◼ "particleIds": list of particle IDs present in this batch

This command only works in combination with the gd.getParticles command.

Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

BatchInfo = particles.getBatchInfo(1) # dictionary containing batch info

is assigned to the variable

BatchInfo

print(BatchInfo["minTime"]) # prints the start time of batch 1

to the console

.GETDIAMETER(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME)

Returns the (interpolated) particle diameter at a given time. This command only

works in combination with the gd.getParticles command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Diameter = particles.getDiameter(1, 2000, 1) # the diameter of the particle in

batch 1 with particle ID 2000

at time 1 is assigned to the

variable Diameter

print(f"The particle diameter is {Diameter}m") # prints the diameter to the console

Python scripting in GeoDict – GeoDict API – Module specific functions

GeoDict 2024 User Guide 73

.GETDIAMETERS(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME STEP)

Computes the (interpolated) particle diameters with a given step size. Sampling starts

at “minTime” and increments by step size up to “maxTime”. Returns a list of tuples
(time, radius). This command only works in combination with the gd.getParticles
command. The command makes sense, only when the particle with the given particle

index changes its diameter over time. Otherwise, an empty list is returned.

.GETLOADEDBATCHINDICES()

Returns a list of valid particle batches that are currently loaded in memory. This
command only works in combination with the gd.getParticles command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Batches = particles.getLoadedBatchIndices() # assign the list of the batch

indices to the variable Batches

print(Batches) # prints the list to the console

.GETMULTIPLICITIES(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME STEP)

Computes the (interpolated) particle multiplicity with a given step size. Sampling
starts at “minTime” and increments by step size up to “maxTime”. Returns a list of
tuples (time, multiplicity). This command only works in combination with the

gd.getParticles command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

M = particles.getMultiplicities(1, 2000,

0.0001)

assign the list of tuples to the

variable M

print(f"In batch 1 the particle 2000 has

multiplicity {M[1][1]} at time {M[1][0]}.")

prints the values of the second

tuple to the console

.GETMULTIPLICITY(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME)

Computes the (interpolated) particle multiplicity at a given time. This command only
works in combination with the gd.getParticles command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

M = particles.getMultiplicity(1, 2000, 0.0001) # assign the multiplicity to the

variable M

print(f"In batch 1 the particle 2000 has

multiplicity {M} at time 0.0001.")

prints the multiplicity to the

console

.GETPARTICLEINFO(INT BATCH INDEX, INT PARTICLE INDEX)

Returns information about a particle inside a batch as a Python dictionary. This

command only works in combination with the gd.getParticles command.

The resulting dictionary contains:

◼ "minTime", "maxTime": start/end time of particle trajectory

◼ "material_id": the material ID of the particle

◼ "type": type index of the particle

◼ "status_code": numerical status of the particle

GeoPy scripting to automate GeoDict simulations

74 GeoDict 2024 User Guide

◼ "status": human-readable interpretation of particle status (e.g.

"EXIT_OUTFLOW", "TRAPPED_SIEVING")

◼ "end_material_id": if status is "HIT_END_MATERIAL", this contains the material
id which the particle hit

◼ "is_ghost": True if ghost particle

◼ "times": time values for individual sample points along the trajectory

◼ "positions": particle position for each time

◼ "radii": particle radius for each time or single value if not time-dependent

◼ "multiplicities": particle multiplicity for each time

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Info = particles.getParticleInfo(1, 3500) # assign the material ID to the

variable M

M_ID = Info["material_id"]

print(f"The material ID of the particle is

{M_ID}.")

prints the material ID to the

console

.GETPOSITION(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME)

Returns the (interpolated) particle position at a given time. This command only works
in combination with the gd.getParticles command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Pos = particles.getPosition(1, 3500, 0.0001) # assign the position of a particle

to the variable Pos

print(f"The position of the particle is {Pos}.") # prints the position to the console

.GETPOSITIONS(INT BATCH INDEX, INT PARTICLE INDEX, FLOAT TIME STEP)

Computes the (interpolated) particle positions with a given step size. Sampling starts
at “minTime” and increments by step size up to “maxTime”. Returns a list of tuples

(time, position). This command only works in combination with the gd.getParticles
command. Example:

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Pos = particles.getPositions(1, 3500, 0.0001) # assign the list of tuples (time,

position) of a particle to the

variable Pos

print(f"The position of the particle is

{Pos[1][1]} at time {Pos[1][0]}.")

prints the second (time, position)

tuple to the console

.GETPOSITIONSATTIME(INT BATCH INDEX, FLOAT TIME)

Computes all (interpolated) particle positions at a given time.

particles = gd.getParticles("2024") # assigns the particles object to

the variable particles

Pos = particles.getPositionsAtTime(1, 0.0001) # assign the list of positions of

all particle at the given time

to the variable Pos

print(f"The position of the particles are

{Pos}.")

prints positions to the console

Python scripting in GeoDict – Shipped Python modules

GeoDict 2024 User Guide 75

SHIPPED PYTHON MODULES

In addition to the API provided by the gd object, GeoDict also includes some Python
packages (inside the gd folder), which are useful for reading/writing GeoDict file

format and some other APIs, as for example the stringmap module (stringmap.py)
which can be used to parse GeoDict key/value text file formats such as GDR files and
the gdr module to create custom GeoDict result files. How to use the stringmap

module is shown on page 81 and how use the gdr module is described on page 84.

The following table shows the most important Python libraries, that are shipped with

GeoDict. To use them in a macro, import the respective module in the first lines of
the macro, as shown above with the module stringmap.

Library Description

matplotlib Graph plotting and data visualization library.

numpy
Fast numerical calculations. The GeoPy API uses NumPy data types
for accessing structures and volume fields.

PIL (pillow) Library to read, write, and manipulate images.

xlsxwriter Create Excel files from GeoPy.

pptx

Library to create PowerPoint slides.

Note: GeoDict provides a simplified wrapper API in the gd_ppt
namespace, as described on page 76.

scipy
Library for scientific & numerical computation (integration,
interpolation, optimization, linear algebra, statistics).

lxml XML & HTML processing library.

psutil
Library for accessing information about the operating system and

currently running processes.

If a module is needed which is not shipped with GeoDict, it can be installed as

described on page 22.

GeoPy scripting to automate GeoDict simulations

76 GeoDict 2024 User Guide

POWERPOINT REPORT GENERATION

GeoDict includes a simplified wrapper API to create PowerPoint files. This is
particularly useful, if the same workflow is repeated often with different parameters

in an automatic parameter study and the results should be presented in a PowerPoint
report. In this way, gd_ppt provides a simple possibility to compare the results as
desired.

The general idea is to prepare an empty PowerPoint file, containing only slide masters,
which is loaded with the gd_ppt library from a Python file. For each slide to be

generated, an empty layout master slide is selected and added to the presentation.
Then, the placeholders are replaced by actual content. The supported content types
are text, pictures, movies, and tables. The placeholders are identified by the text

inside the placeholder.

To prepare an own template, the user saves a copy of his/her own corporate design

PowerPoint template, containing only master slides. In PowerPoint, the user changes
to the master view by selecting View → Slide Master from the toolbar.
The layout master slides are organized under an overall Theme Master Slide.

Change only the needed Layout Masters by replacing the text in the needed
placeholder by a single, rememberable name, e.g. title or picture.

The following screenshot shows layout masters with placeholders. The slide indices

are shown here with red numbers. Observe that the slide counting starts with zero.

In the figure above, the selected example layout master with index 1 has two
placeholders called title and picture.

The gd_ppt library is loaded at the beginning of a Python file with the command
import gd_ppt and contains the following commands:

GD_PPT.REPORTGENERATOR(TEMPLATE FILE)

Opens the template PowerPoint file.

ADD_SLIDE(LAYOUT MASTER INDEX)

Adds a slide with the style defined by the Layout Master with the given index.

0

1

2

Theme Master Slide

Layout Masters

Python scripting in GeoDict – PowerPoint Report Generation

GeoDict 2024 User Guide 77

SAVE(FILE NAME)

Saves the PowerPoint presentation under the given name.

ADD_TEXT(PLACEHOLDER, TEXT, FONT_SIZE)

Fills a text placeholder with text in the given font size. The font size is optional. If

omitted, the resulting font size will be the same as used in the placeholder. For this
command a text placeholder is needed. Example:

import gd_ppt # import PowerPoint API wrapper

library

rep =

gd_ppt.ReportGenerator("example_template.pptx")

create a report generator based

on master slides in

"example_template.pptx"

sl = rep.add_slide(0) # create a slide based on the first

layout master (index number 0)

sl.add_text("title", "This is a text example") # fill the placeholder title with

the text This is a text

example. Font size is omitted

sl.add_text("text", "This is the slide content.",

font_size = 45)

fill the placeholder text with

the text This is the slide

content in font size 45

rep.save("report_example.pptx") # save the PowerPoint presentation

with the name

report_example.pptx

The result of this example is a PowerPoint presentation containing the single slide
shown on the right. The first picture shows the corresponding layout master from the

template file with index 0. All placeholders have been replaced by actual content, e.g.
title was replaced by This is a text example.

ADD_PICTURE(PLACEHOLDER, PICTURE FILE)

Fills a picture in the given picture placeholder. For this command, a picture

placeholder is needed. Example:

import gd_ppt # import PowerPoint API wrapper

library

rep =

gd_ppt.ReportGenerator("example_template.pptx")

create a report generator based

on master slides in

"example_template.pptx"

sl = rep.add_slide(1) # create a slide based on the

second layout master (index

number 1)

GeoPy scripting to automate GeoDict simulations

78 GeoDict 2024 User Guide

sl.add_text("title", "Picture Example") # fill the placeholder title with

the text Picture Example

sl.add_picture("picture", "example_picture.png") # fill the placeholder picture with

the picture example.png from

the project folder

rep.save("report_example.pptx") # save the PowerPoint presentation

with the name

report_example.pptx

ADD_MOVIE(PLACEHOLDER, MOVIE FILE)

Replaces the given picture placeholder by a
movie. For the movie, a thumbnail is needed,

that is shown before the movie is played back.
Therefore, a folder with the name example (if
the movie is named “example.mp4”) must be

located in the same folder as the movie and
should contain the folder images with at least

one picture. This folder is automatically
generated if a video is generated with GeoDict
and Keep Images is checked. For the

add_movie command, a picture placeholder
is needed.

Example:

import gd_ppt # import PowerPoint API wrapper

library

rep =

gd_ppt.ReportGenerator("example_template.pptx")

create a report generator based

on master slides in

"example_template.pptx"

sl = rep.add_slide(1) # create a slide based on the

second layout master (index

number 1)

sl.add_text("title", "Movie Example") # fill the placeholder title with

the text Movie Example

sl.add_movie("picture", "example_movie.mp4") # fill the placeholder picture with

the movie example.mp4 from the

project folder

rep.save("report_example.pptx") # save the PowerPoint presentation

with the name

report_example.pptx

Python scripting in GeoDict – PowerPoint Report Generation

GeoDict 2024 User Guide 79

ADD_TABLE(PLACEHOLDER, TABLE, HORIZONTAL_HEADER, VERTICAL_HEADER, FONT_SIZE)

Transforms a list into a table and adds it to the given placeholder. The headers and
the font size are optional. If both headers are given, the vertical header has to contain
one additional entry for the horizontal header line. For the add_table command, a

table placeholder is needed. Example:

import gd_ppt # import PowerPoint API wrapper

library

rep =

gd_ppt.ReportGenerator("example_template.pptx")

create a report generator based

on master slides in

"example_template.pptx"

sl = rep.add_slide(2) # create a slide based on the third

layout master (index number 2)

sl.add_text("title", "Table Example") # fill the placeholder title with

the text Table Example

h_h = ["number", "letter"] # assign a list for the horizontal

header to the variable h_h

v_h = ["titles", "first row", "second row"] # assign a list for the vertical

header to the variable v_h

table = [[1, "a"], [2, "b"]] # assign a list for a 2x2 table to

the variable table with the

entries 1 and a in the first

row and 2 and b in the second

row

sl.add_table("table", table, horizontal_header =

h_h, vertical_header = v_h, font_size = 50)

fill the placeholder table with

the defined table and the

headers h_h and v_h, and font

size 50

rep.save("report_example.pptx") # save the PowerPoint presentation

with the name

report_example.pptx

GeoPy scripting to automate GeoDict simulations

80 GeoDict 2024 User Guide

In the examples above, only one slide was added for each PowerPoint report.

Of course, the number of slides added to a report is not limited. Add as many slides
as desired between the lines rep = gd_ppt.ReportGenerator() and rep.save().

Python scripting in GeoDict – Access to GeoDict result files

GeoDict 2024 User Guide 81

ACCESS TO GEODICT RESULT FILES (*.GDR)

Accessing GeoDict result files from Python macros is possible with the stringmap
module. Use it to parse GeoDict key/value text file formats such as GDR files.

Stringmaps represent a hierarchical key/value data structure, like a nested dictionary.

An example of usage, assuming a geometric pore size distribution (Granulometry)
was run with PoroDict and the result file was saved as PoreSizes.gdr:

import stringmap

The module stringmap is loaded in the beginning.

gdrPath = "PoreSizes.gdr"

a pore size distribution with PoroDict has to be run first to obtain the *.gdr file

gdr = stringmap.parseGDR(gdrPath)

read and parse the GDR file into a string map object called "gdr"

gdr.push("ResultMap")

make all further operations work on the subtree called "ResultMap"

get the list values called "MaxDiameter" and "VolumeFractionCumulative" from the result

map in the GDR

to get other types of values use one of the following methods: gdr.getBool(key),

gdr.getInt(key), gdr.getDouble(key)

getList() always returns a list of strings, however

maxDiameters = gdr.getList("MaxDiameter")

alternatively, you can omit the push before and write "ResultMap:MaxDiameter" here

volFracsCumulative = gdr.getList("VolumeFractionCumulative")

do the following to convert the string lists to numerical values

maxDiameters = [float(x) for x in maxDiameters]

convert each list entry from a string to a floating point value

volFracsCumulative = [float(x) for x in volFracsCumulative]

convert each list entry from a string to a floating point value

gdr.pop()

go back to the root of the tree

To find the right keys open a result file in the GeoDict Result Viewer by selecting

File → Open Results (*.gdr) from the menu bar and move to the desired map tab,

here the Results – Map subtab. The Input Map ("InputMap"), the Log Map
("LogMap"), the Post Map ("PostProcessingMap") and the Parameter Map under the

Metadata tab ("ParameterMap") can be accessed in the same way.

GeoPy scripting to automate GeoDict simulations

82 GeoDict 2024 User Guide

.PARSEGDR(GDRPATH STRING)

Parses the given GeoDict result file (*.gdr) and returns it as a map. The values are
accessible by entering the right key in square brackets. For the right key, look in the
result file as described above. The result file map has a tree like structure. The

different levels of subtrees are separated by colon ":".

import stringmap # import the stringmap module

gdrPath = "C:/Automation/PoreSizes.gdr" # define the file path of the gdr

file to consider"

gdr = stringmap.parseGDR(gdrPath) # parse the gdr file

weight = gdr["ResultMap:Weight"] # get the value for weight

print(weight) # print the resulting values

.PUSH(KEY STRING)

All operations following this command only consider the given subtree.

.POP()

After push was used, this command leads back to the root of the tree.

.GETUNIT(KEY STRING)

Returns the unit for the given key as a string.

import stringmap # import the stringmap module

gdrPath = "C:/Automation/PoreSizes.gdr" # define the file path of the gdr

file to consider"

gdr = stringmap.parseGDR(gdrPath) # parse the gdr file

weight_Unit = gdr.getUnit("ResultMap:Weight") # get the unit for weight

weight = gdr.getDouble("ResultMap:Weight") # get the value for weight as

number

Python scripting in GeoDict – Access to GeoDict result files

GeoDict 2024 User Guide 83

print(weight, weight_unit) # print the resulting values

.GETDOUBLE(KEY STRING)

Returns the value for the given key as floating point number. For an example, see

above.

.GETINT(KEY STRING)

Returns the value for the given key as integer number.

.GETBOOL(KEY STRING)

Returns the value for the given key as bool (True or False).

.GETLIST(KEY STRING)

Returns the value for the given key as list.

.HASKEY(KEY STRING)

Checks if the given key is contained in the considered tree and returns True or False
accordingly. For an example see below for getFullKey.

.GETFULLKEY(KEY STRING)

Returns the full key path for the given key, e.g. ResultMap:Porosity, if Porosity is

given for a pore size distribution result.

import stringmap # import the stringmap module

gdrPath = "C:/Automation/PoreSizes.gdr" # define the file path of the gdr

file to consider"

gdr = stringmap.parseGDR(gdrPath) # parse the gdr file

if gdr.hasKey("Weight"): # if the key “Weight” is contained

in the gdr the following

indented section is executed

 key_path = gdr.getFullKey("Weight") # get the full key path for

“Weight”

 print(key_path) # print the full key

if the key is not in the gdr,

execute the following indented

section

else:

 print ("The key is invalid."):

print message in the GeoDict

console

.TOFILE(FILE PATH STRING)

Saves the stringmap to the given file. In the following example, the value for “Weight”
is changed and the new map is saved to a new result file.

import stringmap # import the stringmap module

gdrPath = "C:/Automation/PoreSizes.gdr" # define the file path of the gdr

file to consider"

gdr = stringmap.parseGDR(gdrPath) # parse the gdr file

gdr["ResultMap:Weight"] = [0.0025, "mg"] # set the weight to 0.0025 mg

instead of 2.5e-10 kg.

gdr.toFile("NewResultFile.gdr") # save the new map under a new

name”

GeoPy scripting to automate GeoDict simulations

84 GeoDict 2024 User Guide

CREATE CUSTOM GEODICT RESULT FILES (*.GDR)

GeoDict includes an API to create custom result files (*.gdr). This is particularly
useful, if the same workflow is repeated often with different parameters in an

automatic parameter study and the results should be presented in the GeoDict Result
Viewer. In this way, the library gdr provides a simple possibility to compare the
results as desired. For more details about result files refer to the Result Viewer User

Guide.

The gdr library is loaded at the beginning of a Python file with the command import

gdr and contains the following commands:

GDR.GDR.CREATEEMPTYRESULS(GDR FILE NAME, RELEASE)

Creates an empty *.gdr file and a result folder with the given name. Start with this
command to create a custom GeoDict result file already containing input map, log

map, post map and results tabs. Additionally, the GeoDict project folder is changed
to the result folder automatically. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with the

name

CustomResultFile.gdr and

assign it to the

variable gdrf (GeoDict

result file)

https://geodict.com/fileadmin/script/UserGuide.php?lang=en&chapter=ResultViewer&release=2024

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 85

SAVERESULTS(RESULTMAP, REPORT, RELEASE)

Saves the results to the result file. Define a result map and the report. This command

saves the result file with all settings defined by the commands shown in this chapter
used in the lines between createEmptyResults() and saveResults(). Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with the

name

CustomResultFile.gdr and

assign it to the

variable gdrf

report = "This a custom result file." # define text for the Report

tab and assign it to

variable report

resultMap = {

 'ResultValueList' : {

 'SVP' : (10, '%'),

 'Diameter' : (3, 'µm')},

 'AnotherResult' : 'This is another result'}

define content for the map

subtab of the Results

tab in the result file

and assign it to

variable resultMap

gdrf.saveResults(resultMap, report, "2024") # write and save the file

CustomResultFile.gdr

with report and Result

map

 # result file is

automatically opened in

Result Viewer

SAVEGEOMETRY(FILENAME, RELEASE)

Saves the currently loaded structure file to the result folder and adds a geometry map

to the result file allowing to load the structure via the Load Structure button in the
result file and showing a green dot if the structure is loaded. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

and assign it to the

variable gdrf

gdrf.saveGeometry("2024") # define text for the

Report tab and

assign it to

variable report

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

GeoPy scripting to automate GeoDict simulations

86 GeoDict 2024 User Guide

GEOMETRYMAP = PYTHON DICTIONARY

For advanced users. Adds explicitly given Geometry data to the generated result file.
In most cases it is recommended to use the addGeometry() command instead to

generate the needed data automatically from the currently loaded structure.

The Geometry map must be given correctly. Then loading the corresponding structure
file to GeoDict leads to a green dot in the result viewer. If the structure also is saved

to the result folder, a Load Structure button appears in the result file. The geometry
Python dictionary must contain the keys shown in the following example. If the

structure is in memory, the corresponding values can be contained with GeoPy API
functions as shown.

import gdr # import gdr library

strucHash = gd.getStructureHash() # get structure hash

strucHash64 = gd.getStructureHash64() # get structure hash 64

strucDesc = gd.getStructureDescription() # get structure name

nx,ny,nz = gd.getVolDimensions() # get number of voxels in

x-,y- and z-

direction

voxelLength = gd.getVoxelLength() # get voxel length in

meter

volDimension = nx*ny*nz # compute total number of

voxels

svp = gd.getSolidVolumeFraction() # for a structure with

two solid materials

assigned to material

ID 1 and ID 2, this

computes the solid

volume percentage

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

GeometryParameters = {

 'Hash' : strucHash,

 'Hash64' : strucHash64,

 'FileName' : 'Example.gdt',

 'NX' : nx,

 'NY' : ny,

 'NZ' : nz,

 'UseBoxels' : False,

 'VoxelLength' : (voxelLength,'m'),

 'SolidVolumeFraction' : svp}

assign a Python

dictionary

containing geometry

data to the variable

GeometryParameters

gdrf.geometryMap = GeometryParameters # add geometry data to

result file

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 87

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

ADDPLOT(PLOT TITLE, X LABEL, Y LABEL, X UNIT, Y UNIT, X VALUES, Y VALUES, GRAPH TITLE)

Adds a plot to the result file with the given plot title, labels, units, values and the
graph title. For each new plot added, a new subtab is created in the Plots tab of the

Results tab. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

and assign it to the

variable gdrf

Plotname = 'First Plot' # define a plot name

XLabel = 'Some Label for X-Axis' # define X-Axis label

YLabel = 'Label for Y-Axis' # define Y-Axis label

XValues = [0,1,2,3] # define X-values as a

list

YValues = [0,2,4,9] # define Y-values list

GraphName = "This is a plot." # define a graph name

gdrf.addPlot(Plotname, XLabel, YLabel, '%', 'µm', XValues,

YValues, GraphName)

add plot to result file

with name, labels,

units, values and

graph name

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

GeoPy scripting to automate GeoDict simulations

88 GeoDict 2024 User Guide

ADDGRAPHTOPLOT(PLOTNUMBER, X VALUES, Y VALUES, GRAPH TITLE)

Adds a graph to one of the created plots. Enter the X- and Y- values and the graph

title. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

and assign it to the

variable gdrf

Plotname = 'First Plot' # define a plot name

XLabel = 'Some Label for X-Axis' # define X-Axis label

YLabel = 'Label for Y-Axis' # define Y-Axis label

XValues = [0,1,2,3] # define X-values as a

list

YValues = [0,2,4,9] # define Y-values as a

list

GraphName = "This is a plot." # define a graph name

gdrf.addPlot(Plotname, XLabel, YLabel, '%', 'µm', XValues,

YValues, GraphName)

add plot to result file

with plotname,

labels, units,

values and graph

name

Plotname2 = 'Second Plot' # define a plot name

XLabel2 = 'Some Label for X-Axis' # define X-Axis label

YLabel2 = 'Label for Y-Axis' # define Y-Axis label

XValues2 = [0,5,20,70] # define X-values as a

list

YValues2 = [10,5,1,0.5] # define Y-values list

GraphName2 = "This is also a plot."

define a graph name

gdrf.addPlot(Plotname2, XLabel2, YLabel2, '%', '',

XValues2, YValues2, GraphName2)

add plot to result file

with name, labels,

units, values and

graph name

XValues3 = [0,20,30,85] # define X-values list

YValues3 = [0,3,6,10] # define Y-values list

GraphName3 = "This is the second graph in this plot."

define a graph name

gdrf.addGraphToPlot(2, XValues3, YValues3, GraphName3)

add graph to second

plot

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty result map

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 89

POSTMAP = PYTHON DICTIONARY

For experienced users, defining all plot parameters manually by adding a Post Map

creates a Plot subtab to the Results tab of the generated result file. In most cases,
however, it is recommend to add plots via the addPlot() and addGraphToPlot()
commands. In the following example find the keys, that must be given to obtain a

plot. For more possible keys refer to Post Map tabs in usual GeoDict simulation result
files.

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

plotParameters = {

 'PlotTitle' : 'Another Plot',

 'XAxisLabel' : 'X-Axis Label',

 'YAxisLabel' : 'Y-Axis Label',

 'XAxisUnit' : '',

 'YAxisUnit' : '%',

 'XAxisRange' : 'Auto',

 'YAxisRange' : 'MinMax',

 'YAxisMinValue' : -5,

 'YAxisMaxValue' : 15,

 'NumberOfGraphs' : 1,

 'Graph1' : {

 'GraphTitle' : 'This is a plot',

 'DrawStyle' : 'Lines',

 'XValues' : [0,1,2,3],

 'YValues' : [0,2,4,9]}}

define plot parameters

and assign them to

variable

plotParameters

define labels for the

two axes

define units for both

axes

define how the default

axis range should be

given. Possible

values are

Automatic, Auto,

MinMax, Tight

define number of graphs

in the plot

possible values for

DrawStyle are

LinesPoints, Bars,

Lines, Points,

FilledStep,

VerticalSpan,

HorizontalSpan

postParameters = {

 'Plots' : {

 'NumberOfPlots' : 1,

 'Plot1' : plotParameters}}

assign Python

dictionary

containing plot

parameters to

variable

postParameters

gdrf.postMap = postParameters # add a Post Map tab and

plots to result file

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

ADDTEXT (STRING)

Adds text in the Result – Report subtab of the generated result file. With this
command several lines of text can be added and also text can be placed between

tables or images added with the commands addTable and addImage, while the text
inserted in the saveResults command always is placed at the end of the report.
Example:

import gdr # import gdr library

GeoPy scripting to automate GeoDict simulations

90 GeoDict 2024 User Guide

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

gdrf.addText("This a custom result file.") # add text in Report tab

gdrf.addText("This is a second line of text.") # add more text in Report

tab

report = "This is the last section in the result file." # define text for the

Report tab and

assign it to

variable report

gdrf.saveResults({}, report, "2024") # write and save the file

CustomResultFile.gdr

with report and an

empty Result map

ADDTITLE (STRING)

Adds titles in the Result – Report subtab of the generated result file. This is a similar
to the addText command, but with bold font. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with the

name

CustomResultFile.gdr

gdrf.addTitle("First Title") # add a title in Report tab

gdrf.addText("This a custom result file.") # add text in Report tab

gdrf.addTitle("Second Title") # add another title in Report

tab

gdrf.addText("This is more text.") # add more text in Report tab

report = "This is the last section in the result file." # define text for the Report

tab and assign it to

variable report

gdrf.saveResults({}, report, "2024") # write and save the file

CustomResultFile.gdr

with report and an empty

Result map

gd.showGDR('CustomResultFile.gdr') # open result file in Result

Viewer

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 91

ADDIMAGE(STRING IMAGE FILE PATH, STRING TITLE)

Adds an image to the Results – Report subtab of the generated result file.
Additionally, the image is saved to the corresponding result folder. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

gdrf.addImage('../image.png', 'Example Image') # add image to Report tab

report = "This is a report." # define text for the

Report tab and

assign it to

variable report

gdrf.saveResults({}, report, "2024") # write and save the file

CustomResultFile.gdr

with report and an

empty Result map

ADDTABLE(STRING TITLE, LIST COLUMN HEADERS, *LIST TABLE)

Adds table to the Results – Report subtab of the generated result file. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

col_headers = ["number", "letter"] # define column headers

in a list of strings

GeoPy scripting to automate GeoDict simulations

92 GeoDict 2024 User Guide

table = [[1, 2], ["a", "b"]] # define table as list of

columns

gdrf.addTable("This is a table", col_headers, *table) # add table to Report tab

gdrf.addTitle("This is a title") # add a title to Report

tab

report = "This is a report." # define text for the

Report tab and

assign it to

variable report

gdrf.saveResults({}, report, "2024") # write and save the file

CustomResultFile.gdr

with report and an

empty Result map

INPUTMAP.UPDATE(PYTHON DICTIONARY)

Adds content to the Input Map tab of the generated result file. The input map by
default already contains the entries ResultFileName and MacroFilePath. The content

for the Python dictionary to add can be chosen as desired. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

InputParameters = {

 'ExampleParameterUnit' :(5,'%'),

 'ExampleSubMap' : {

 'ExampleNumber' : 10.5,

 'ExampleString' : 'Value'}}

assign a Python

dictionary

containing the input

parameters as key-

value pairs to

variable

InputParameters

gdrf.inputMap.update(InputParameters) # add entries to InputMap

tab of result file

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 93

LOGMAP.UPDATE(PYTHON DICTIONARY)

Adds entries to the Log Map tab of the generated result file. By default the result file
already contains information about the system on which the macro is run. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

LogParameters = {

 'TotalRunTime' :(15,'s')}

assign a Python

dictionary

containing the log

parameters, for

example the runtime

or data about the

used computer to the

variable

LogParameters

gdrf.logMap.update(LogParameters) # add the runtime to the

Log Map tab of the

result file

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

SETDESCRIPTION(STRING DESCRIPTION)

Replaces the default description “Created by macro 'macro file path'.” by a custom

description in the Metadata tab of the generated result file. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

gdrf.setDescription("This is a result file description.") # add description to

Metadata tab

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

GeoPy scripting to automate GeoDict simulations

94 GeoDict 2024 User Guide

PARAMETERMAP.UPDATE(PYTHON DICTIONARY)

Adds parameters to the Parameter Map in the Metadata tab of the generated result
file. By default, the map already contains the entries MacroFilePath and

NumberOfVariables. The content for the Python dictionary can be chosen as desired.
Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

ParameterParameters = {

 'Project' : 'User Guide',

 'Chapter' : 'GeoPy Scripting'}

assign a Python

dictionary

containing

parameters to the

variable

ParameterParameters

gdrf.parameterMap = ParameterParameters # add a Parameter Map to

result file

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

Python scripting in GeoDict – Create custom GeoDict result files

GeoDict 2024 User Guide 95

COMMAND = STRING GEODICT COMMAND

Adds a custom Command name to the generated result file. The command name

must be given as a string, and consists of a name for the module, a colon (:), and a
name for the solver. The command name can for example be viewed in the Module
and Command columns in the top of the Result Viewer. Example:

import gdr # import gdr library

gdrf =

gdr.GDR.createEmptyResults("CustomResultFile","2024")

open a result file with

the name

CustomResultFile.gdr

gdrf.command = 'ExampleModule:ExampleSolver' # add command with module

name ExampleModule

and solver name

ExampleSolver to

result file

gdrf.saveResults({},"", "2024") # write and save the file

CustomResultFile.gdr

with empty report

and empty Result map

GeoPy scripting to automate GeoDict simulations

96 GeoDict 2024 User Guide

ACCESS TO GEODICT STRUCTURES AND RESULT FIELDS (GUF FILES)

The GeoDict Universal File (GUF) format is a generic file format that contains large
amounts of data that were computed with GeoDict. Most structures and result fields

in GeoDict are GUF files, e.g. *.gdt, *.vap, *.gpp, …. Using binary data avoids a loss
of precision and provides efficient read and write operations.

GUF files begin with a header in text format, which (for small GUF files) can be

inspected by opening the file with a text editor. The header is followed by binary data.
Meta data describing the binary data is contained in the header and is line-based with

pairs of key and value per line.

GeoDict provides a GUF python library in GeoPy to access GUF files without loading
them to GeoDict.

STRUCTURE OF A GUF FILE

Every GUF file consists of two sections: The Header section and the Binary Data

section.

The Header section gives information about the binary content in the Binary Data
section in form of key - value pairs, similar to a Python dictionary. The meta

information is stored in humanly readable ASCII and has (at least) 256 bytes.
However, it must not be edited, as the header must correspond to the binary data.

The header consists of several blocks and always starts with the GUF version
consisting of the file format and its version. The example below is GDT3, i.e. a version
3 *.gdt file. This is the default *.gdt file format for GeoDict structure files since

GeoDict 2023.

The Creation Data block provides information about the creation of the file, e.g. the

creation time and the used GeoDict revision.

Detailed information about the Image Data is given afterwards. Image Data is stored
in a sequence of images as fields.

A full image has Nx by Ny by Nz entries, corresponding to the domain size of the
structure / result field in voxels.

The example file has 100 voxels in X-, Y- and Z-direction and one image with the
name Structure.

Creation Data

Python scripting in GeoDict – Access to GeoDict structures and result fields

GeoDict 2024 User Guide 97

At the end of the header, File Specific Data blocks can be found, e.g., map data,

info data, and array data.

Additional data in *.gdt files is described by stringmaps, that are maps consisting of
key-value pairs, similar to a Python dictionary. Thus, the specific block in the example

contains map information.

In the example file, there are four maps with the names GAD, GADStats, Materials

and MaterialDatabase. The Binary Data section of the example file is shown here.

Image Data

File Specific Data

GeoPy scripting to automate GeoDict simulations

98 GeoDict 2024 User Guide

In a second example, a flow simulation was run on the structure. The GUF file

FlowField_z.vap file is produced and shown here.

The flow was computed in Z-direction. The file contains two images with the names
Velocity and Pressure. The velocity image contains three fields and the pressure image

one. The velocity fields are called VelocityX, VelocityY and VelocityZ.

Binary Data

Python scripting in GeoDict – Access to GeoDict structures and result fields

GeoDict 2024 User Guide 99

Result files generated by the particle tracker in FilterDict and AddiDict (*.gpp) contain

a large information block providing details about the simulation.

The particle positions are described by arrays. The example file contains one array
with 12 columns and 3600 rows.

GeoPy scripting to automate GeoDict simulations

100 GeoDict 2024 User Guide

ACCESS GUF FILES WITH GEOPY

The GeoPy library provides read-only access for GUF files, using the keys and values
from the header. To use this library in the top of the Python file import the library
with the following command:

from guf import GUF

Then access the desired file and store it in a variable, e.g. guf_file. Therefore, insert

the file path of the desired file in the parenthesis of the function GUF() as follows:

guf_file = GUF("example.vap")

There are four functions for GUF files described in the following, accessing header,

images, arrays and maps.

GETHEADER()

This function returns the complete header as a stringmap. The values contained in

this stringmap can be accessed by adding the corresponding keys in square brackets.

Example:

from guf import GUF

import GUF library

guf_file = GUF("StokesResult/FlowField_z.vap")

access GUF file FlowField_z.vap

guf_header = guf_file.getHeader() # assign the header stringmap to the

variable guf_header

print(guf_header) # print the complete header to the

GeoDict console

imagenumber = guf_header["NumberOfImages"] # assign the number of images to the

variable imagenumber

gd.msgBox(f"The file contains {imagenumber}

images.")

show message dialog

GETIMAGE(STRING NAME)

This function returns the specified image as numpy array. Enter the image name

inside the parenthesis as a string. Find the image names in the header. To access a
volume field from the image, enter the corresponding field name in square brackets.

Basically, this function does the same as the gd.getVolumeField() function described
above, but here no volume field needs to be loaded in GeoDict.

Note: The getImage function is not recommended for compressed images, as
currently the function cannot decompress the image and returns only an 1-

dimensional array. Thus, the fields cannot be accessed. For compressed images, the
key Image#:Compression can be found in the header. Thus, for these images it is
recommended to use the gd.getStructure or the gd.getVolumeField functions,

described on pages 58 and 60 respectively.

Python scripting in GeoDict – Access to GeoDict structures and result fields

GeoDict 2024 User Guide 101

Example:

from guf import GUF

import GUF library

guf_file = GUF("StokesResult/FlowField_z.vap")

access GUF file FlowField_z.vap

guf_image = guf_file.getImage("Velocity") # assign the numpy array

corresponding to the image

Velocity to the variable

guf_image

guf_field = guf_image["VelocityX"] # assign the numpy array

corresponding to the flow field

VelocityX to the variable

guf_field

gd.msgBox(f"The velocity at position (50,50,50)

in the Velocity X field is

{guf_field[50][50][50]}.")

show a message dialog for the

velocity at position (50,50,50)

GETARRAY(STRING NAME)

This function returns the specified array as a numpy array. Enter the array name
inside the braces as a string. Find the array names in the header. For a single column

add the corresponding column name in square brackets.

This function only works, if the GUF file contains arrays (e.g. FilterDict *.gpp files).

There are many very helpful FilterDict Particle specific Functions described on
pages 72ff, but for the getArray function the trajectories do not need to be loaded in
GeoDict.

Example:

from guf import GUF

import GUF library

guf_file =

GUF("FilterLifeTime/Batch00001/TrackerFinalParticles

.gpp")

access FilterDict result

file

TrackerFinalParticles.

gpp

guf_array = guf_file.getArray("ParticlePositions") # assign the numpy array

containing the

particle positions to

the variable guf_array

id_5 = guf_array["ID"][5] # assign fifth element in

the column ID to the

variable id_5 (count

starts with 0)

pos_5 = guf_array["Position X"][5] # assign fifth element in

the column Position X

to the variable pos_5

(count starts with 0)

time_5 = guf_array["Time"][5] # assign fifth element in

the column Time to the

variable time_5 (count

starts with 0)

gd.msgBox(f"The particle with ID {id_5} has the X-position

{pos_5} at time {time_5}.")

show message dialog

GeoPy scripting to automate GeoDict simulations

102 GeoDict 2024 User Guide

guf_row = guf_array[5] # assign the numpy array

containing the sixth

entry of all columns to

the variable guf_row

gd.msgBox(f"The particle with ID {guf_row[0]} has the X-

position {guf_row[2]} at time {guf_row[8]}.")

show the same message

dialog as before

GETMAP(STRING NAME)

This function returns the specified map as a stringmap, consisting of key – value pairs.
Enter the stringmap name inside the braces as a string. Find the map names in the

header. This function only works for *.gdt files.

There are many very helpful General Functions described on pages 50ff applicable

for structure files (e.g. gd.getGADObject), but for the getMap function the structure
does not need to be loaded in GeoDict.

To access only the desired information of the stringmap add the corresponding keys

in square brackets. The needed keys can be found out by printing the desired map in
the GeoDict console.

In the example below, the GAD statistics map is printed to the console and the number
of objects in the 14th Z-slice is returned in a message dialog.

Example:

from guf import GUF

import GUF library

guf_file = GUF("FiberGeo/Structure.gdt")

access GUF file Structure.gdt in

the folder FiberGeo

guf_map = guf_file.getMap("GADStats") # assign the stringmap of the GAD

statistics for all 2D slices to

the variable guf_map

print(guf_map) # print the stringmap to the GeoDict

console

objectscount_Z =

guf_map["PerSliceObjectCountsZ"]

assign the string containing

statistics for the Z-slices to

the variable objectscount_Z

objectscount_Z = objectscount_Z.split(',') # split the string by commas, and

obtain a list

count_Z_slice_13 = objectscount_Z[13] # assign the 14th entry in the list

(index 13 as counting starts

with 0) to the variable

count_Z_slice

gd.msgBox(f" In Z-slice 14 there are

{count_Z_slice_13} objects.")

show a message dialog.

Python scripting in GeoDict – Error reporting

GeoDict 2024 User Guide 103

ERROR REPORTING

Exceptions which happen in Python code and are not caught in Python code (e.g.
when you try to open a file that does not exist) trigger an error dialog box in GeoDict

and terminate the execution of the macro.

In the following find error messages and their explanations for common errors.

VARIABLES DICTIONARY

KeyError: 'Variable#'

There are not as many variables given in the dictionary as given by the
NumberOfVariables entry in the Variables dictionary.

A common error leading to this message can also be, that the third variable was not

named Variable3 after copying and pasting Variable1 for example.

AssertionError: NumberOfVariables does not match the number of entries in the

Variables Dictionary

This error happens, if there are more variable entries, than the NumberOfVariables
parameter determines.

GeoPy scripting to automate GeoDict simulations

104 GeoDict 2024 User Guide

GEODICT COMMANDS

Command Queue: pre-checking of command no # … failed: Error while reading

settings and materials for …

This error message means that needed keys in the corresponding GeoDict command
dictionary are missing. This can happen if commands from a macro recorded with an

earlier GeoDict release are copied into a newer macro, because the command
parameters may have changed. This issue can easily be resolved by explicitly giving

the right release year as input argument for the gd.runCmd function, as by default
the release is taken from the macro file header.

Python scripting in GeoDict – Error reporting

GeoDict 2024 User Guide 105

A command with the name X:Y is not valid.

If the given command name does not exist, for example when typing it manually or
changing it after recording, this message appears. The command in this example

FiberDict:Create should be FiberGeo:Create.

INVALID SYNTAX

SyntaxError: … (macrofilepath, line)

There are many possibilities to obtain a syntax error. Some of the most common
syntax errors are:

◼ Perhaps you forgot a comma?: missing commas in the end of a line in a Python
dictionary

◼ '{' was never closed: missing closing brackets

GeoPy scripting to automate GeoDict simulations

106 GeoDict 2024 User Guide

◼ unterminated string literal: missing quotation ending

◼ expected ':':missing colons (e.g. in definitions or in the line defining a loop.

Python scripting in GeoDict – Error reporting

GeoDict 2024 User Guide 107

IndentationError: expected an indented block (macrofilepath, line)

This error message appears, if no indented block is found, where it is expected, e.g.
in a loop ('for' statement).

EXECUTE A PYTHON SCRIPT

Python scripts are executed as shown above starting in page 8 (script without

variables) and starting in page 14 (script with variables) for GeoPy macros.

GeoPy scripting to automate GeoDict simulations

108 GeoDict 2024 User Guide

RUNNING GEODICT FROM THE COMMAND LINE

Being comfortable with the command prompt, it is a fast possibility to run GeoDict

from the command line without the GUI. Although it is possible to open GeoDict from
the command line (>>Installationpath\geodict2024.exe), it is not necessary for

running macros. The following command prints a helpful list of commands:

>>"Installation-path\geodict2024.exe" -h

Macros can be executed using the command

>>"Installation-path\geodict2024.exe" macro-file

Running GeoDict from the command line

GeoDict 2024 User Guide 109

The result files are stored in the working directory chosen for the command prompt
(here C:\Automation), if no other desired file path is given within the macro. If the

working directory differs from the macro folder, the file path of the macro also must
be given for its execution.

To assign variables from the variables block of parameter macro use -v "Key"
"Value" for each variable.

GeoPy scripting to automate GeoDict simulations

110 GeoDict 2024 User Guide

If images should be saved executing a macro, the command --enable-rendering is

needed. This command opens a hidden GUI until the execution of the macro is
terminated.

 https://doi.org/10.30423/userguide.geodict

Math2Market GmbH

Richard-Wagner-Str. 1, 67655 Kaiserslautern, Germany
www.geodict.com

© Fraunhofer Institut Techno- und Wirtschaftsmathematik ITWM, 2003-2011.
© Math2Market GmbH, 2011-2024. All rights reserved.

Technical
documentation:

Janine Hilden

Jürgen Becker

Anne Blumer

Barbara Planas

	GeoPy scripting to automate GeoDict simulations 1
	Structure of a GeoPy macro (*.py) 3
	Macro menu 6
	Start Macro Recording 7
	End Macro Recording 7
	Execute Macro / Script 8
	Session macro 24
	Convert GMC to Python Macro 29
	Re-execute the last Python script. 29

	GeoDict Console 30
	Choosing a text editor to edit a macro 34
	Editors available for Windows users 35
	Editors available for Linux users 35

	Parameter macros for parameter studies 36
	Transforming a simple macro into a parameter macro for a parameter study 36
	Starting VaryMacro from Python 42
	Available Variable Types 44

	Python scripting in GeoDict 50
	GeoDict Application Programming Interface (API) 50
	Shipped Python modules 75
	PowerPoint Report Generation 76
	Access to GeoDict result files (*.gdr) 81
	Create custom GeoDict result files (*.gdr) 84
	Access to GeoDict structures and result fields (GUF Files) 96
	Error reporting 103
	Execute a Python script 107

	Running GeoDict from the Command Line 108

	GeoPy scripting to automate GeoDict simulations
	Structure of a GeoPy macro (*.py)
	Macro menu
	Start Macro Recording
	End Macro Recording
	Execute Macro / Script
	Macro Description
	Fixed and Vary Parameters
	Run (in Cloud, in Job Queue), Live Update, Continue on Error, Silent Mode, Step, Skip, Load Parameters , Reset macro and Record Only
	Adding other Python packages
	GeoPyAPI Help

	Session macro
	Convert GMC to Python Macro
	Re-execute the last Python script.

	GeoDict Console
	Choosing a text editor to edit a macro
	Editors available for Windows users
	Editors available for Linux users

	Parameter macros for parameter studies
	Transforming a simple macro into a parameter macro for a parameter study
	Editing the macro

	Starting VaryMacro from Python
	Available Variable Types

	Python scripting in GeoDict
	GeoDict Application Programming Interface (API)
	General Functions
	gd.runCmd(cmdName, args, versionString)
	gd.runCmdIgnoreExtraKeys(cmdName, args, versionString)
	gd.runCmdFromGPS(gps_file_path)
	gd.msgBox(basic Python value)
	gd.showGDR(path)
	gd.getBlocker()
	gd.getDomain(versionstring)
	gd.getVolDimensions()
	gd.getVoxelLength()
	gd.getVoxelCounts2D(direction:int, material index : int)
	gd.getVoxelCounts3D()
	gd.getSolidVolumeFraction()
	gd.getViewStatus(versionString)
	gd.get2DViewAsPlot(int direction, int slice, bool orientation)
	gd.getBuiltinDefaults(string commandName)
	gd.getCurrentSettings(string commandName)
	gd.setCurrentSettings(string commandName, parameters dictionary, version string)
	gd.setTemperature(temperature float, unit string)
	gd.getConstituentMaterials()
	gd.getDataBaseMaterial(string name)
	gd.getMaterialDataBaseFolder()
	gd.getGADMode()
	gd.getNumberOfGADObjects()
	gd.getGADObject(int id, versionString)
	gd.getSelectedGADObjects()
	gd.getSelectedVoxels()
	gd.getSettingsFolder()
	gd.getInstallationFolder()
	gd.get3rdPartyBinFolder() / gd.getResourcesFolder() / gd.getGDModulesFolder()
	gd.getGDFolder()
	gd.getGDGeoAppsFolder()
	gd.getGDVideoMacroFolder()
	gd.getMacroFileFolder()
	gd.getMacroFileName()
	gd.getProjectFolder()
	gd.getHostName()
	gd.getStandardFileHeader()
	gd.getVersion()
	gd.getVersionInfo()
	gd.getStructure()
	gd.getStructureDescription()
	gd.getStructureHash()
	gd.getStructureHash64()
	gd.getStructureFileName()
	gd.getNumberOfTriangles()
	gd.getTriangulationBoundingBox()
	gd.getVolumeFieldsInfo()
	gd.getVolumeField(index or name)
	gd.getProgress(str text, int steps, str splash, bool graph, bool has stop button)
	gd.setStructure(3D numpy array, float Voxel Length)
	gd.setStructureDescription(string description)
	gd.updateGeometry()
	gd.updateVolumeField(string path)
	gd.makeDialog(string key, string title)
	gd.makeGraphDialog()

	ImportGeo-Vol specific Functions
	gd.ImportGeoVol.getHistogram()
	gd.ImportGeoVol.getNewImage()
	gd.ImportGeoVol.getNewImageDimensions (direction)
	gd.ImportGeoVol.getNewImageResized(nx,ny,nz, bool is16Bit)
	gd.getOriginalImage()
	gd.ImportGeoVol.getOtsuThreshold()
	gd.ImportGeoVol.getMultiOtsuThreshold()
	gd.ImportGeoVol.getVoxelLength()
	gd.ImportGeoVol.setVoxelLength(voxel length)
	gd.ImportGeoVol.getRotationSuggestion(full image, threshold)

	FilterDict Particle specific Functions
	gd.getParticlesInfo()
	gd.getParticles(versionString)
	.getBatchInfo(int batch index)
	.getDiameter(int batch index, int particle index, float time)
	.getDiameters(int batch index, int particle index, float time step)
	.getLoadedBatchIndices()
	.getMultiplicities(int batch index, int particle index, float time step)
	.getMultiplicity(int batch index, int particle index, float time)
	.getParticleInfo(int batch index, int particle index)
	.getPosition(int batch index, int particle index, float time)
	.getPositions(int batch index, int particle index, float time step)
	.getPositionsAtTime(int batch index, float time)

	Shipped Python modules
	PowerPoint Report Generation
	gd_ppt.reportgenerator(template file)
	add_slide(layout master index)
	save(file name)
	add_text(placeholder, text, font_size)
	add_picture(placeholder, picture file)
	add_movie(placeholder, movie file)
	add_table(placeholder, table, horizontal_header, vertical_header, font_size)

	Access to GeoDict result files (*.gdr)
	.parseGDR(gdrPath string)
	.push(key string)
	.pop()
	.getUnit(key string)
	.getDouble(key String)
	.getInt(key string)
	.getBool(key string)
	.getList(key string)
	.hasKey(key string)
	.getFullKey(key string)
	.toFile(file path string)

	Create custom GeoDict result files (*.gdr)
	gdr.GDR.createEmptyResuls(gdr file name, release)
	saveResults(resultmap, report, release)
	saveGeometry(filename, release)
	geometryMap = Python Dictionary
	addPlot(plot title, x label, y label, x unit, y unit, x values, y values, graph title)
	addGraphToPlot(plotNumber, x values, y values, graph title)
	postMap = Python dictionary
	addText (string)
	addTitle (string)
	addImage(string image file path, string title)
	addTable(string title, list column headers, *list table)
	inputMap.update(Python dictionary)
	logMap.update(Python dictionary)
	setDescription(string description)
	parameterMap.update(Python dictionary)
	command = string GeoDict command

	Access to GeoDict structures and result fields (GUF Files)
	Structure of a GUF file
	Access GUF files with GeoPy
	getHeader()
	getImage(string name)
	getArray(string name)
	getMap(string name)

	Error reporting
	Variables Dictionary
	KeyError: 'Variable#'
	AssertionError: NumberOfVariables does not match the number of entries in the Variables Dictionary

	GeoDict Commands
	Command Queue: pre-checking of command no # … failed: Error while reading settings and materials for …
	A command with the name X:Y is not valid.

	Invalid Syntax
	SyntaxError: … (macrofilepath, line)
	IndentationError: expected an indented block (macrofilepath, line)

	Execute a Python script

	Running GeoDict from the Command Line

